@ PLAYFAB’

Features & Technology Overview

Last updated June 15, 2016

Executive Summary
PlayFab Game Services
Cross-Platform Player Accounts

Data Storage
Title data

Catalog data
Assets
User data
Scope
Permissions
Client access rights
Player group data
Statistics and Leaderboards
Leaderboards
Resettable leaderboards

Matchmaking

Segmentation
In-game commerce

Virtual currencies

Catalog

Drop tables

Stores

Inventory

Trading

Real-money transactions
Server-side game logic

CloudScript

Custom game server hosting

Photon
Marketing

Push notifications

News articles

Coupon codes

Page 1

Cross-game promotions.
Targeted stores

Social
Friends list
Friends leaderboards
Chat

PlayStream
Event Pipeline
Event Debugger
Rules Engine
Real-time Player Segmentation
Webhooks

Event History

Event Replay
S3 Archive

PlayFab Game Manager
Permissions
Dashboards and Reporting
Audit log
Customer support
Developer Tools
APl
Multiplatform SDKs
Add-on Marketplace
PlayFab Technology
PlayFab Architecture
API technology stack
PlayStream technology stack
CloudScript technology stack
Custom game server technology stack

Scalability
Availability
Service monitoring
Incident management
Limits
Security
Data backup and restore
Development Process
Steps for developing and deploying changes
Load Testing
Adventure Capitalist Launch
API| Performance for AdCap
Future Roadmap

Page 2

Executive Summary

This white paper provides an overview of all PlayFab features, the technology used to build and
operate PlayFab, and the processes followed to create, deploy, monitor, and maintain the entire
platform. It's meant to be a living document, updated frequently to keep up with the rollout of
new features.

This white paper is not meant to be a technical reference, or how-to guide, however. Some
features listed here as single features live across multiple APIs and are exposed in multiple
places in the game manager web application. For example, “User Data Storage” spans 18
separate APIs between the client and server APIs.

For more information on any of the features listed in here, see the online documentation site, at
https://api.playfab.com/ or contact the Developer Success team at “devrel@playfab.com”.

PlayFab Game Services

PlayFab offers the following game service features. These features are accessed directly via the
PlayFab Web API, or through a platform-specific SDK. Many of these features are also exposed
via the PlayFab Game Manager web application for game testing, configuration, or operation

Cross-Platform Player Accounts

Player accounts are at the heart of PlayFab. Every user gets a player account, which are
authenticated by and linked to the accounts in multiple third party platforms, such as:
Steam

iOS device identifier

Apple Game Center

Android device identifier

Google Play

PlayStation Network

Xbox Live

Facebook

Amazon

Kongregate

Custom authentication providers (such as an existing internal account system)

By linking multiple authentication providers to a single player account, PlayFab supports
cross-platform game play.

Page 3

https://api.playfab.com/
mailto:devrel@playfab.com

Data Storage

PlayFab provides an easy way to store custom player and game data. Data is stored as
key/value pairs, where values can be plain text, JSON, or binary blobs.

Title data

Title data which can be accessed by all players and game clients. This data is typically used for
game configuration information, such as game difficulty settings or level descriptions.

Catalog data

Every item in the catalog (see section on in-game commerce) can have custom properties
associated with it, such as rate-of-fire for a weapon, or mana points for a collectible card.

Assets

PlayFab provides support for uploading asset files, and then delivering them to game clients via
an integrated CDN.

User data

Data stored per player account. Player information is broken down as follows:

Scope

e Publisher-level -- data for a given user account shared across all titles from that
publisher, such as cross-game achievements.

e Game-level -- player account data for a specific game title, such as save state, controller
settings, or avatar image.

e Character-level -- each player can have multiple characters (or vehicles) in a single
game, each with their own data for things such as tank configuration, or health
remaining.

e Inventory-level -- data for individual items from a player’s virtual goods inventory.

Permissions

e Private -- can only be accessed by the player.
e Public -- can be accessed by other players (e.g. description of a base)

Client access rights

e Read/write -- the game client can read and write the data.
e Read-only -- the game client can read the data, but only a game server can write it.
e Internal -- the data is invisible to the client; only the server can read or write it.

Page 4

Player group data

Data may be shared among a specific group of players, such as a guild, or players in a lobby.
Examples include guild name, or group message of the day. Players can be added and
removed from a shared group; all members in the group can read or write shared group data

Statistics and Leaderboards

Statistics are a special subcase of player and character data, used to represent numerical
properties. They have have string names and integer values, and they are set according to one
of the following aggregation methods:

e Last: overwrites the statistic with the specified value

e Min: overwrites the statistic if the specified value is lower than the current value
e Max: overwrites the statistic if the specified value is higher than the current value
e Sum: adds the specified value to the current value

Besides tracking numeric properties, statistics can be used for the following purposes.

Leaderboards

Any statistic can be used to define a leaderboard comprised of a list of players, ranked by their
value for the statistic. There are API options for retrieving the top ranked players overall, the
players surrounding a given player on the leaderboard, or a player’s ranked list of friends (see
Social).

Resettable leaderboards

Statistics can be configured to reset on an hourly, daily, weekly or monthly schedule. When a
statistic resets, all associated leaderboards and matchmaking rankings reset as well. Archives
of leaderboards and all players’ values for previous versions of the statistic are retrievable after
the reset. This can be useful for events or tournaments.

Matchmaking

Stats can be used as part of the multiplayer matchmaking logic (e.g. find a match based on
player’s level or weapon rating).

Segmentation

Statistics can be used to define player segmentation rules (e.g. players with XP > 5 and < 10).
More information in the PlayStream section.

Page 5

In—game commerce

PlayFab provides an in-game commerce system for managing and selling in-game entitiements
with real or virtual currency. These can range from virtual items (e.g., a sword, a new tank) to
content unlocks (e.g. unlock level 5, unlock an additional character slot).

The following features work together to form a complete in-game economy, with PlayFab
handling the logic to securely verify real-money purchases and grant the associated
entitlements, to process transactions for earning and spending virtual currency, to manage the
lifecycle of each virtual good, as it is granted, stacked, consumed or expired, and more.

Virtual currencies

Each game can define multiple virtual currencies, with optional initial balances, recharge rates,
and maximums. Each player and character can have separate balances for each virtual
currency, and virtual currency can be exchanged between characters and players.

Catalog

The game catalog defines the master list of all items in the game, with optional usage counts,
expiration times, custom properties, stacking behavior, price in one or more virtual currencies,
and price in one or more real-world currencies. Bundles allow multiple items or currencies to be
purchased together. Containers are like bundles, but must be opened before their contents are
granted. Containers can be locked, in which case the player must have a matching key to open
the container.

Drop tables

Drop tables are weighted lists of items that can be used with bundles or containers to randomly
grant items according to the desired probabilities. Examples include card-packs, treasure
chests, or lucky draws.

Stores

A store is a subset of a catalog, with optional price overrides. Stores allow items to be
discontinued from sale, yet still exist in the catalog. They also allow certain segments of players
to be targeted with special prices (see Targeted Stores).

Inventory

Each player and character has an inventory of items that is maintained by PlayFab as items are
purchased, granted, consumed, or expire. ltems in the inventory can have custom per-instance
properties.

Page 6

Trading

Bundles of items can be traded between players. Trades are executed using an escrow and are
fully transactional.

Real-money transactions

PlayFab supports a number of payment mechanisms for real-money transactions, including
platform-specific systems such as Steam, PlayStation, and Xbox, Facebook, PayPal and
Amazon. PlayFab also supports server-to-server receipt validation with protection from replay
attacks for mobile platforms such as Google and Apple.

The specifics of each payment provider integration are abstracted behind consistent purchasing
and receipt validation APIs.

Server-side game logic

PlayFab provides several mechanisms for securely hosting custom game logic, without having
to manage server infrastructure.

CloudScript

Server-hosted JavaScript which define custom functions that execute in response to requests
from the game client or to filtered PlayStream events. Cloud script code executes within the
security context of the current player and can call the privileged server API, which cannot
ordinarily be called from the client. It can also make web requests to arbitrary HTTP endpoints,
enabling integration with other services or existing backend systems.

The results of each Cloud Script function execution, along with log statements and diagnostic
information are returned to the game client and / or published as PlayStream events, making it
easy to debug and troubleshoot.

CloudScript provides process-level isolation between titles and utilizes the V8 JavaScript engine
for high performance. Code revisions can be uploaded to the Game Manager or pulled from a
Git repository, using the GitHub Marketplace Add-on.

CloudScript functions can be called in several ways:
e From a game client via the client API.
e From a game server, via the server API.
e As atriggered action in response to a particular PlayStream event.
e Manually, from the Game Manager, for a particular player.

Page 7

Custom game server hosting

PlayFab can host custom game servers built with any language and engine. After a package
containing the server executable and dependencies is uploaded, PlayFab automatically deploys
and scales game servers based on load to maintain sufficient capacity for hosting new game
matches. Game servers can optionally be hosted in many different regions around the world,
providing for low latency connections between game clients and servers.

Built-in matchmaking supports assigning players to matches based on parameters such as
min/max players, region, game mode, player statistics, and friend list. Developers may also
provide custom matchmaking logic.

Games servers can write local files, including logs, replays, or crash dumps, which are
automatically archived and indexed for later analysis or replay. Game servers authenticate
connecting players using a ticket system, and can call the privileged game server API.

Photon

PlayFab’s partnership with Exit Games makes it especially easy for games to provision
multiplayer game rooms using Photon Cloud. Rooms can automatically call CloudScript for
events such as EnterRoom or ExitRoom, and user authentication is taken care of automatically.

Marketing

PlayFab has several features to help games market to their existing players.

Push notifications

Games can send custom mobile push notifications directly to a specific player using the server
API. Push notifications can also be triggered by player segment changes or PlayStream events.
The content of the push notification message can be customized with properties from the
player’s profile using a template.

Customer service reps may also manually send a push notification to a player directly from
within Game Manager.

News articles

Developers can publish articles using the Game Manager to be displayed in the game.
Examples include launcher message-of-the-day, interstitials, and in-game notices.

Page 8

Coupon codes

PlayFab can generate one-time coupon codes which may be redeemed in-game for any item in
the catalog.

Cross-game promotions.

Publishers can cross-promote titles on PlayFab by enabling players in one game to unlock or be
granted items in other games.

Targeted stores

The contents of a store can be replaced with those of a different store based on a player’'s
segmentation. This allows a game’s product manager to offer different stores to different players
without having to write any code, including both A/B test scenarios.

Social

PlayFab has several social features to help promote higher engagement and retention through
player-to-player interaction.

Friends list

PlayFab maintains a friends list for each player, and can automatically add players to that list by
matching against existing Facebook or Steam friends. Games can also add or remove players
to the list directly. The friends list can also be used by leaderboards and matchmaking.

Friends leaderboards

Leaderboards can be filtered to include only a player’s friends who have a value for the
leaderboard statistic.

Chat

PlayFab supports player chat rooms via partnership with Exit Games.

PlayStream

PlayStream is an event processing system that unifies the entire data flow from a game into a
single event stream. It collects built-in events generated by PlayFab game services, as well as
custom events generated by a title’s game client, server, and existing backend systems. It
processes the stream of events through a flexible rules and player segmentation engine in
real-time, and routes them to wherever they need to go, including third party services.

Page 9

Player and Game Events
(e.g. log in, see ad, buy item, fight

monster, level up, at risk of churn)

Game client

Game servers

Event Filters

Vendor tools / services

< Automation Actions

Data Player (send message, grant item, show
warehouse segmentation offer, call webhook)

Event
archive

Event

debugger

Event Pipeline

The event pipeline reliably captures and stores events generated by the API, client and server,
and it automatically scales to handle growing event volumes. Tracking information about each
event is updated in real-time at every stage of the pipeline.

Event Debugger

PlayStream events can be viewed in near real-time as they flow through the pipeline, using the
event debugger in Game Manager. This is useful for debugging during development and for
customer support after launch. Events can be viewed for a particular player, or sampled across
the entire title.

Rules Engine

Rules for triggering actions based on matching events are defined using the visual rule editor in
the Game Manager. For example, an event indicating that a player completed a tutorial might
trigger a rule that grants the player an inventory item, sends them a push natification, or even
executes a custom Cloud Script function. These rules are matched to events in the pipeline in
real-time, making them suitable for implementing game logic which can be revised without
requiring client updates.

Page 10

Real-time Player Segmentation

Player segments are defined based on profile properties such as statistics, virtual currencies,
source, or login behavior using the visual segment builder in the Game Manager.

Segments can be used to change the game’s behavior based on the player's segment. For
example, using the Targeted Store Feature, a game may target different stores to different
player segments. Segments can also be shared with third-party add-ons.

Actions can also be triggered automatically as players enter or exit segments, in real-time. For
example, the “social maven” segment could be configured to automatically grant a gift to players
as soon as they invite more than 10 friends via Facebook.

Players can also be placed into segments randomly, to enable A/B testing. Product managers
can define multiple test buckets, with different weightings for each, into which players are
automatically slotted. These segments can then be used to experiment with different game
behavior, with the resultant KPIs broken out by test segment.

Webhooks

PlayStream events can be posted to external web services via HTTP webhooks. Webhooks
make it easy to integrate with a custom analytics provider or to tie-in to a developer’s existing
backend services.

Event History

A searchable event history supports filtering and viewing historical events based on properties
such as player, event type, time and source. The results include delivery status for webhooks
and other destinations.

Event Replay

The historical archive of events can be “replayed” against a particular webhook or 3rd party
Add-on, making it possible to try out or sign up for new vendor services, and get the full benefit
of historical data.

S3 Archive

A complete or filtered set of PlayStream events for a title can be written directly to an AWS S3
bucket, formatted for direct import into RedShift or for processing by Elastic Map Reduce jobs,

Page 11

among other purposes. The S3 bucket can be in any AWS account, as long as it has the
appropriate write permissions.

PlayFab Game Manager

PlayFab provides a unified web interface that gives an operations team a single destination for
viewing and managing a live game. Most of the game services listed above, including
PlayStream, can be managed and used via the Game Manager.

Specific features unique to the Game Manager include:

Permissions

PlayFab provides a robust permission model so that different users can be given permission to
access different features. For example, customer service reps can be given permission to edit
player properties but not change item prices, and product managers can be given permission to
create or edit items, but not stop or start game servers.

Dashboards and Reporting

A set of basic dashboards include up-to-the-minute graphs of game KPlIs, such as:
e Logins

Installs

Purchases

Virtual currency transactions

PlayStream events

API requests

API errors

Daily reports provide accurate tallies for
DAU

MAU

ARPU

Retention

Top grossing items

Top spending players

Additional dashboards and reports will be added over time.

Page 12

Audit log

A list of all configuration or data changes made via the Game Manager, along with who made
them, makes it easy to track down issues or monitor support changes.

Customer support

Support representatives can investigate issues and provide service recovery by granting or
revoking virtual items or virtual currency, temporarily or permanently banning abusive players,
looking up login history, editing player properties, reviewing purchase history, and more.

Developer Tools

PlayFab provide a rich set of APIs and SDKs to help developers easily integrate PlayFab’s
services into their game.

API

All PlayFab services are exposed via a JSON-based web API for fully cross-platform support. All
API documentation is auto-generated from the code ensuring it is always up-to-date with any
changes.

Multiplatform SDKs

PlayFab provides SDK’s for the following devices or platforms:
ActionScript
Android Studio
C#

Cocos 2D

Java

Javascript
Lumberyard
NodedS
Objective C
Unity3D

Unreal Blueprint
Unreal C++
Windows (C++)
Xamarin

Page 13

All of the SDK’s are auto-generated directly from the API code, making it easy to add new
SDK’s as needed, and ensuring that the SDK stays consistent with any changes to the API. The
API generator was open-sourced via GitHub so developers can build their own SDK’s if needed.

Add-on Marketplace

PlayFab provides a
marketplace of
pre-integrated third party
services, many of which
can be activated without
any additional SDK
needed on the client.

Categories of add-ons
include advertising,
attribution tracking,
community, advanced
analytics, payment
providers, and more.

Marketplace Add-ons are able to send and receive PlayStream events, and they can expose
actions which may be triggered via PlayStream Actions. Partners are able to access player
profile data, providing a single consistent view of the player across the entire system of
services, and can also call into the PlayFab API to interact directly with the game.

PlayFab Technology

Operating online games at scale is a challenge. Load is unpredictable and can ramp up very
quickly. Data access patterns are very demanding and write heavy. Infrastructure can fail
without warning.

PlayFab’s approach to providing a highly scalable and available service is to build with

components that are 100% elastic with respect to compute and storage, and that offer
multi-datacenter redundancy.

Page 14

PlayFab Architecture

Architecture Overview

@ AWS cloud: PlayFab Web Services

. . ‘ -+ Amazon Redshift
~—y 1
S 1
Event Processor —_—

DynamoDB Amazon RDS Amazon 53 Amazon Kinesis A :
Partners Physical game Physical game
Cross-zone storage (Webhooks) servers Servers

=Tip

AmazonEC2 Matchmaker Amazon EC2 Matchmaker
(APIs) (APIs) Amazon EC2 Amazon EC2

Virtual Virtual
Availability Zone A @ Availability Zone B Ll

Game Server
Monitor

Amazon Route 53 =Sherd Sebie]

Elastic Load Balancing QOregon (B EELEC i Tokyo i Virginia ¢
] | - PlayFab Server API
et (HTTPS)
woatanitll playFab
-, Admin APl . PlayFab Client API Game Protocol
Game Manager (HTTPS) (HTTPS) (TCP / UDP)

(Dashboards) Game Client

October 8, 2015

API technology stack

DNS (Route53) per-title traffic routing

HTTPS load balancer (ELB) endpoints supporting TLS1.2

API server auto-scaling group of EC2 instances running C# / ASP.Net MVC5
Player data stored in DynamoDB (auto-scaling read/write throughput) and S3

PlayStream technology stack

e Incoming events written to Kinesis data stream (sharded by player ID)

Amazon EC2
(Virtual game
servers)

e Auto-scaling groups of EC2 instances read events from stream and perform real-time

segmentation, action triggering and dispatch

e Events dispatched to secondary Kinesis streams for further processing (webhooks,
CloudScript triggers, custom S3 bucket delivery, partner add-on integrations, etc.)

e Events and segmentation results stored in S3 (archive / replay), Redshift (reporting),
Elasticsearch (search, trends), DataDog (real-time metrics), and RDS (rolled-up player

profiles)

CloudScript technology stack

e All CloudScript requests forwarded to a separate pool of auto-scaling EC2 instances with

extremely limited role permissions - no direct data access

Page 15

Scripts execute in the V8 JavaScript engine
Pre-authenticated server API, log collector, and HTTP client exposed as script objects
using ClearScript engine host

e Process isolation between scripts from different titles

Custom game server technology stack

Title game server executable build with any language / engine technology

PlayFab management service launches server processes, monitors health, and collects
logs, output files and crash dumps

Windows Server 2012 R2

Autoscaling service ensures that there is sufficient server capacity in all selected regions

Scalability

Every component of the core architecture is capable of rapidly adjusting compute and storage
resource capacity based on usage level. This meets the challenges of variable and
unpredictable load, while operating efficiently and cost effectively.

Read capacity Units/Second - 1 min avg o Throttled read requests Count Write capacity Units/Second - 1 min avg o Throttled write requests Count

800 1 1,500 1
: 75 7
500 S 1,000 il
400 0.5 05
200 0.25 500 0.25
0 0 0 0

611 613 615 611 6/13 6i15 &1 613 615 611 613 615

00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 oo:00

M Provisioned Il /Consumed Batch M Provisioned Bl |Consumed - Batch

M |Get I Scan I Cuery M Put M |Update I Delete Il
get wirite:

The primary data store for player data is DynamoDB, which supports quickly modifiable levels of
read and write throughput capacity. A resource monitoring service adjusts these levels every
minute, based on usage.

Page 16

Avg HealthyHostCount by count =

12.5

10.0
.5 M
k.0

2.5

0.0
6/13 613 613 614 614 614 615 615 615
01:59 09:59 17:59 01:59 09:59 17:59 01:59 09:59 17:59

Sum RequestCount by count

1250000

1000000
750000
500000

250000

0
613 613 613 614 614 614 615 615 615
01:59 09:59 17:59 01:59 09:59 17:59 01:59 09:59 17:59

Services run on groups of auto-scaling EC2 instances in three Availability Zones. Enough spare
processing capacity is maintained to absorb an AZ outage with no downtime.

e Typical daily peak as of June 16, 2016: 1,200 RPS, 1.9M daily active users
e |Load test peak: 22,000 RPS, 1M concurrent users

Availability

There are no “special snowflake” servers. A machine terminating is never a cause for alarm. All
server roles, including core web services, matchmaking, event stream processing and report
generation have instances running in multiple AZs. Storage services are all replicated across
multiple data centers as well.

e All data is stored in managed AWS services with 2 or 3 redundant copies in separate
Availability Zones for durability and availability

o S3:3AZs
o DynamoDB: 3 AZs
o RDS:2AZs

e All API and event processing runs on machines distributed across 3 AZs.

Page 17

e Single-purpose servers (e.g. matchmaking) run in primary/replica configuration in 2
AZs, with Route53 application health check triggered failover (~30s latency)

e Uptime (monitored by pingdom): 99.99% (27 min downtime) last 12 months, 100% (0
min downtime) YTD

Service monitoring

Thousands of application and machine level metrics related to the operation of the service are
collected continuously and written to Datadog, a service that provides data aggregation,
analysis, dashboards and alerting. These metrics provide insight into the performance of the
APIs and features and how customers are using them.

— e L ‘

1 e
2000 L A A RSBt s as i 150 S — —
W il & 1851 # b .

The same metrics that appear on dashboards in the PlayFab offices also feed into a set of
automated monitors and alerts that can trigger alarms in the face of abnormal conditions. Some
examples of metrics and alerts include:

Metric Dimensions Alerts

API execution o API e High response latency
e C(Calling title e High error response rate
e HTTP status e Sudden request rate
e Error code change

PlayStream event e Event e High processing delay

processing o Title e Sudden burst of events
e Processing stage e High processing failure
e Processing outcome rate

CloudScript execution e Title e High execution time
e Function e High error rate

Page 18

e Revision

By setting dimensions on each metric for contextual information, activity can be tracked down to
the individual API, PlayStream event, or game title. Issues that impact just one or a small
number of customers can be quickly identified that would otherwise be lost in the noise, and
then either resolved or else the customer(s) can be informed of required action. For example,
customers can be quickly notified when their CloudScript functions have endless loop bugs or
similar errors.

Incident management

Every member of the backend engineering team participates in the on-call rotation, so there is
always someone ready to diagnose and respond to issues impacting the service 24x7x365.
Since these are the same developers who build and maintain the service every day, they are
best equipped to resolve incidents quickly and effectively.

VictorOps is used to manage the on-call rotation and route alerts, which are triggered by several
redundant sources of service monitoring, including Datadog metrics, AWS CloudWatch metrics
and Pingdom uptime monitors.

A server health check page is maintained at http://status.playfab.com/ with a list of any incidents
impacting the service and their resolutions.

Limits
No hard caps on RPS
Configurable RPM limits for each API per player session and/or per client IP
Configurable limits on count and size of per-player inventories, data values,
leaderboard statistics etc.
e Configurable limits on other forms of resource consumption, such as CloudScript
execution time

Page 19

http://status.playfab.com/

Security

Trustworthiness is one of PlayFab’s core values, and so security is taken very seriously. The
most recent security audit was in October 2015 by the Veris Group. It returned no significant
issues, and only five issue of ‘low’ concern. All of those issues have either since been fixed, or
triaged as insignificant risks. The findings from the audit are available for review upon request.

Overall, PlayFab follows the following security-first principles:

e All communication with the API via TLS1.2

e Authentication via platform-specific methods (e.g. Google/Apple device, Facebook,
Steam, XboxLive, PSN) employ server-side verification according to their specs

e Email / username / password authentication - password hashed / salted with bcrypt
before storage

e All communication between machines and storage is within a VPC. The only port open
to the public internet is port 443 (HTTPS) on the ELB

e Data can optionally be encrypted in transit or at rest within the AWS VPC as part of a

private cloud using AWS Key Management Service

Data backup and restore

DynamoDB table snapshots
to S3 bucket in a separate
region.

Data Backup procedure Restore procedure
Player data Periodically scheduled Data Data Pipeline job copies
(DynamoDB) Pipeline jobs copy snapshot from S3 bucket to

new DynamoDB tables.

Player profiles
(SQL)

Daily full RDS database
shapshots.

Restore database snapshot
to a new RDS database.

PlayStream events
(Kinesis)

Full copy of every event
saved to S3 bucket.

PlayStream replay job loads
events from S3 bucket and
posts to stream or arbitrary
HTTP endpoint.

Development Process

PlayFab relies heavily on automated build and test processes to achieve high reliability while
still making frequent updates and improvements (often several times a week). Phabricator is
used as the task management and code review tool, and Jenkins is the automated build and

Page 20

test tool. Nearly every gate for the code submission process has been automated, because a
lightweight process results in higher compliance from engineers - it's easy to do the right thing.

Steps for developing and deploying changes

1. Code changes for a new feature or bug fix are prepared in a Git feature branch by one or
more developers.

2. Unit and integration tests are developed in parallel accompanying the change, with a
minimum of 80% branch code coverage.

3. The code is submitted to Phabricator, which automatically schedules the change to be
built and tested on Jenkins..

4. After the code change passes the complete test run of all unit and integration tests, it is
published for peer code review.

5. Once the change is accepted by the reviewers, it is committed to the master branch,
built, and deployed to a staging environment in AWS that mirrors production.

6. A final suite of acceptance tests is run against the staging environment. If all tests pass,
the commit is considered ready to deploy to production.

7. A completely new set of machines, load balancers, etc. is launched in the production
environment running the new build, using AWS CloudFormation Templates.

8. Using weighted DNS records, live traffic is gradually shifted to the new production
environment, which is continuously monitored for errors or performance issues. If any
issues are detected, traffic is reverted back to the previous environment.

The hardest part of the PlayFab code base to test automatically has until recently been the suite
of SDKs. 14 SDKs are supported, across more than 6 devices including iOS, Android, PC, web
browsers, Xbox, and Playstation. SDK bugs are especially frustrating for game developers,
since they can grind development to a halt, yet the only way to test them in most cases is to run
tests on the target devices.

Manual testing is not an option, since SDKs are auto-generated from API definition files. Each
time a change is made to the backend platform, the SDKs are rebuilt.

To solve this problem, PlayFab has rolled out (and released to open source) an extension to
Jenkins dubbed the “Jenkernaught” which sends new SDKs to remote devices, runs tests on the
devices, then gathers up the logs and sends the results back to the central testing platform for
analysis. This new process has resulted in a more stable SDK, with less time spent manually
testing and deploying.

Load Testing

Load tests are run frequently to ensure that the service scales predictably. In addition to routine
test to verify the performance of new features, stress tests are run ahead of new title launches

Page 21

that are expected to stress the PlayFab platform in new ways. These runs simulate player
sessions that match the usage patterns of the particular title.

The largest such test was recently run for a large multiplayer game company who wanted to
know that PlayFab service could handle up to 1 million concurrent players.

Details:

e Simulated 1,000,000 concurrent players

e Provisioned 1 million unique player accounts, each with 600 items in the inventory
Results:

e 32 c4.4xlarge server instances, with 65% average CPU usage

e Results in 21K requests per second

API call Median response time 95% response time
LoginWithAndroidID 63ms 185ms

GetTitleData 6ms 15ms
GetCatalogltems 1ms 5ms
GetUserInventory 388ms 577ms
GetStoreltems 1ms 7ms
AddUserVirtualCurrency 24ms 113ms
Consumeltem 40ms 99ms
ValidateGooglePlayReceipt 119ms 282ms

Page 22

System CPU

100

95

90

85

80

75

70

Show/| (1h

The Past Hour

L

| &
W 5579
B s6.96

58.2

B 5053

58.79

B so0:s

58.59

B 5964

59.98

B 008

63.02
W 5548
W 052
W s7as
B sas4
W sie7

63.20

T
02:25

T
02:20

54.2

1 59.03
: 56.89

58.04

: 58.41

58.55
58.98
58.37

1 58.57

57.31
59.09
59.07
54.44
58.98
59.82
54.32
58.21
58.29

T T
02:35 02:40

(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)
(system.cpu.user + system.cpu.user)

(system.cpu.user + system.cpu.user)

T
02:45

Adventure Capitalist Launch

The following chart of player logins depicts how the service performed during the launch. The

T T T
02:50 0255 03:00

{host:I-2DBEBS F6,name:p-mns-load-test-rv-hack]
{host:1-2CBEBSF7,name:p-mns-load-test-rv-hack]
{host:I-8FE1E354,name:p-mns-load-test-rv-hack}
{host:I-DBE14B1F name:p-mns-load-test-rv-hack}
{host:1-2BB6BSFO, name:p-mns-load-test-rv-hack}
{host:1-67C235BE,name:p-mns-load-test-rv-hack}
{host:1-66C2358F,name:p-mns-load-test-rv-hack}
{host:I-EAEO4A2E, name-p-mns-load-test-rv-hack}
{host:I-DAE14B1E,name:p-mns-load-test-rv-hack}
{host:1-64C2358D,name:p-mns-load-test-rv-hack}
{host1-60C43389, name:p-mns-load-test-rv-hack}
{host:1-2EB6BSF 5 name:p-mns-load-test-rv-hack}
{host:I-4A17E093,name:p-mns-load-test-rv-hack}
{host:1-83€91E5A,name:p-mns-load-test-rv-hack]
{host:1-62379DA6, name p-mns-load-test-rv-hack}
{host'I-19B685C2,name " p-mns-load-test-rv-hack}
{host'1-D3E14B1C,name:p-mns-load-test-rv-hack}

{host1-D9E14B1D,name:p-mns-load-test-rv-hack}

T
02:05

T
03:10

T
0315

0320

elastic architecture automatically scaled to handle the sudden jump in load without any issues,

and without any sort of manual intervention.

Page 23

