Shoulder Injuries

Shoulder complex made up of three joints and one articulation
- Glenohumeral joint
- Acromioclavicular joint
- Sternoclavicular joint
- Scapulothoracic articulation

• GH joint is inherently unstable (golf ball on tee)
• Other structures help with stability
 - Joint capsule/ligaments (static)
 - Glenoid labrum (static)
 - Rotator cuff (dynamic)
• All subject to injury leading to instability and dysfunction
Biomechanics

- Complex motion requiring extreme coordination of multiple muscles
- Poor biomechanics (e.g., scapular dysfunction) leads to increased stresses on specific structures and leads to injury and disability
- Importance to detail on history and exam

History

- Chronic (overuse) vs. Acute (traumatic)
- MOI
- Location and character of pain; nocturnal pain
- Feelings of instability
- What activities/motions make pain worse/better
- Radicular symptoms

Acromioclavicular (AC) sprains

- MOI: fall onto tip or point of shoulder
- 6 different types described
- Exam
 - TTP on AC joint
 - Distal clavicle may be prominent
 - Increased pain with adduction ("scarf" test)
Sternoclavicular (SC) sprains

- May be simple sprain or true dislocation
- MOI
 - Most common is indirect force from anterolateral or posterolateral aspect of shoulder (fall onto shoulder with another person landing on top) → results in sprain or possible anterior dislocation
 - Direct blow to medial clavicle from the front → possible posterior dislocation
- Exam
 - TTP at SC joint; prominence of medial clavicle in anterior dislocation
- Radiographs
 - Usually require CT imaging

- Radiographs
 - Zanca view for AC joint
 - Axillary view for anterior or posterior displacement
 - Stress views (archaic)
- Treatment
 - Type I-II → conservative (NSAIDs, sling for comfort, early ROM, rehab)
 - Type IV-VI → surgery
 - Type III → gray zone
Treatment

- Sprain
 - Ice, NSAIDs, Time
- Anterior dislocation
 - Can reduce with posterior bump and gentle arm traction
 - May need sedation
- Posterior dislocation
 - SURGICAL EMERGENCY due to possible compromise of airway, major vessels

Rotator cuff injuries

- “SITS” muscles
 - Supraspinatus
 - Infraspinatus
 - Teres minor
 - Subscapularis
- Dynamic stabilizers of the GH joint
- Acute vs. Chronic
 - Tears
 - Tendinitis
 - Impingement syndrome

Rotator Cuff Tendinitis & Impingement

- Overuse leads to breakdown and weakness of cuff muscles, loss of dynamic stabilization, and impingement
- Supraspinatus most commonly involved
- Direct blow (fall) can cause acute RC inflammation
- Risk factors
 - Repetitive motion of shoulder above horizontal plane
 - Shoulder instability
 - Rotator cuff weakness (previous surgery, trauma)
 - Type II/III acromion, subacromial spur
Rotator Cuff Tears

- Rare in young patients, more common after age 40
- May be traumatic (younger) or overuse (older)
- Supraspinatus/infraspinatus most common
- Exam
 - RC weakness/possible atrophy
 - Pain with resistance; "empty can" test; "drop arm" test; "lift-off" test
 - Scapular dysfunction
- Imaging
 - Ultrasound, MRI, MR arthrogram

Treatment

- Physical therapy/rehabilitation essential
- Ice/oral NSAIDs for mild cases
- Consider subacromial corticosteroid injection
- Younger patients with impingement usually have underlying instability
- Older patients with impingement often have subacromial spur
- May require surgery for subacromial decompression or for instability procedure

Imaging

- Radiographs
 - Check for subacromial spur, calcification in tendon
 - Outlet view to assess acromial type
 - MRI/MRA if suspecting cuff or labral tears

Exam

- Painful arc
- Positive impingement signs (Hawkins, Neer)
- Specific muscle testing may reproduce pain

History

- Trauma, repetitive overhead activities?
- Location of pain (often lateral, deep, may radiate to upper arm)
- Nocturnal pain (very common for RC pain)
- Neurologic symptoms, feeling of instability?
Labral Tears

- Glenoid labrum is a ring of fibrocartilage around the edge of the glenoid fossa
- May be injured acutely (dislocation) or from chronic repetitive stresses (throwing)
- Location
 - Anterior inferior (Bankart) → acute
 - Superior Labrum Anterior/Posterior (SLAP) → chronic

- Treatment
 - Extensive rehabilitation for partial tears (focus on RC strengthening and scapular stabilization)
 - Surgery for complete tears in young active patient or for persistent pain
• MOI
 • Dislocation/subluxation
 • Fall onto outstretched arm
 • Repetitive overhead throwing
 • Shoulder instability
• Signs/symptoms
 • Painful clicking
 • May have locking
 • Similar symptoms to impingement syndrome

• Physical examination
 • Reproducible pain, possible click, with certain motions
 • Specific labral tests
 • O’brien’s test
 • Crank/chunk test
 • Load & shift test

SLAP Tear
• Seen in overhead throwers (adduction and IR during acceleration phase leads to grinding force on superior labrum)
• Can be acute from fall onto arm
• Pain with biceps resistance
Acute injury from dislocation or subluxation
May be labrum only but may be bony avulsion ("bony Bankart")

Imaging
- Plain radiographs may show bony Bankart, calcifications, fractures
- Plain MRI only 50% sensitive
- MR arthrography is study of choice

Treatment
- Generally based on age/activity level of patient
- May try rehabilitation/physical therapy
 - Focus on rotator cuff strengthening to improve stability
- Surgical repair required for persistent symptoms
- Most can be done through the arthroscope
Multidirectional Glenohumeral Instability (MDI)

- Inferior laxity along with anterior and/or posterior laxity leading to abnormal translation of humeral head
- Risk factors
 - Repetitive microtrauma from overhead activities (throwers, swimmers)
 - Generalized ligamentous laxity and connective tissue disorders (Ehlers-Danlos)

Signs/symptoms and exam findings

- Often complain of vague pain, instability feeling, “dead arm”; can often voluntarily sublux/dislocate the joint
- Inferior sulcus sign on exam
- May have excessive external rotation
- Increased laxity noted on load & shift test
- May exhibit increased generalized ligamentous laxity
- C-spine and neurologic exam
- Imaging: MDI diagnosed based on history and exam

Treatment

- Prolonged rehabilitation
 - Focus on rotator cuff strengthening, scapular stabilization
- Surgery reserved for patients with persistent pain after failing > 6 months of rehabilitation
Biceps Tendon

- Tendinitis
- Subluxation
- Rupture
 - Proximal (long head)
 - Distal

Biceps Tendinitis

- Long head of biceps in the biceps groove of humerus
- More common in patients over 40 y/o
- Commonly seen in conjunction with rotator cuff impingement
- History: insidious onset of anterior shoulder pain; risk factors include throwing and overhead racquet sports

Exam

- TTP at biceps groove
- Positive Speed’s and Yergason’s tests
- Imaging not needed

Treatment

- Acute: Rest, Ice, NSAIDs, sling for comfort
- Early rehabilitation/physical therapy are key
 - Stretching exercises and soft tissue mobilization
 - May consider iontophoresis or phonophoresis
 - Rotator cuff rehab
- Corticosteroid injection
 - Direct injection generally not recommended due to increased risk of rupture
 - Subacromial injection may help as some will diffuse down biceps tendon sheath
Biceps Tendon Subluxation
- Proximal long head subluxes out of biceps groove
- Often occurs with subscapularis tear
- Painful anterior shoulder snapping with internal/external rotation
- Exam: will feel tendon sublux out of groove with passive internal/external rotation
- Treatment: initially same as tendinitis; must address any rotator cuff issues; if persistent, may require surgery (tenodesis)

Biceps Tendon Rupture
- May be proximal or distal
- 90+% are proximal long head
- MOI: forceful flexion and/or supination of elbow against resistance
- Risk factors: increasing age, history of tendinopathy, prior corticosteroid injections, anabolic steroid use
- Acute injury → significant pain and swelling, ecchymosis
- Chronic injury (elderly) → may not have significant pain

Exam
- "Popeye" arm
- Ecchymosis
- Weakness of elbow flexion and supination (proximal mild, distal marked)

Treatment
- Distal → surgical repair
- Proximal
 - Elderly may do well with rehab
 - Younger patients often require surgical repair

Adhesive Capsulitis
- "Frozen shoulder"
- Capsular adhesions and contractions leading to loss of ROM
- May be primary (idiopathic) or secondary (traumatic)
Primary Adhesive Capsulitis

- Risk factors: female, middle age, DM, hyperthyroid
- Stages
 - “Freezing”
 - Onset of pain followed by progressive loss of motion, usually starting with ER and abduction
 - “Frozen”
 - Prolonged period of limited ROM, pain resolves
 - “Thawing”
 - Gradual recovery of ROM, often not to pre-condition levels
- May mimic rotator cuff disease in early stages

Treatment
- Pain medications (often not effective)
- Physical therapy (limited value)
- Intraarticular corticosteroid injections may be of some benefit if given early
- Generally expect spontaneous resolution, but may take 1-2 years

Thank you
Glenohumeral Dislocations

- 45% of all dislocations
- Vast majority are anterior (95%)
- MOI: fall onto outstretched arm; multiple dislocators often from minimal trauma
- Risk factors:
 - Hx of previous dislocation
 - Generalized laxity
 - Specific sports

Exam
- Arm often held in external rotation, partial abduction
- Anterior fullness
- Sulcus sign (depression below acromion)
- Assess neurovascular status
 - Axillary nerve → sensation of lateral shoulder; deltoid strength
 - Musculocutaneous nerve → sensation to lateral forearm; biceps strength (elbow flexion and supination)

Imaging
- At least 2 perpendicular views
Treatment

- **Reduction**
 - Often requires analgesia, sedation, especially with increasing time to reduction
 - Hippocratic method: not recommended in modern times
 - Traction method
 - Stimson: prone with weight applied to hanging arm
 - Supine countertraction: traction at 45° abduction with countertraction applied from folded sheet under axilla
 - Leverage method
 - Supine position, externally rotate to 90° and slowly abduct arm (Hennipen, Modified Kocher)

- **Postreduction**
 - NV check
 - Sling and swathe, pain meds
 - Early mobilization to prevent adhesive capsulitis
 - Surgery often required for younger patients with traumatic dislocations
Pectoralis Major Rupture

- Internal rotation and adduction of shoulder
- Tendon forms anterior wall of axilla
- Tears can be partial (grade I-II) or complete (grade III)
- Seen in weightlifters (bench press), wrestlers, boxing
- Sudden onset of pain and often feel snap

Exam
- Swelling/ecchymosis anterior CW and upper arm, may see deformity of CW or anterior axilla
- Weakness of shoulder IR, adduction
- Imaging: MRI to determine severity and need for surgery

Treatment

- Partial tears (grade I-II)
 - Ice, pain medications, activity limitation initially
 - Physical therapy
 - Protected ROM and gradual strengthening
- Complete tears
 - Generally require surgical repair, especially in younger, active patients

Suprascapular Nerve Palsy

- Uncommon injury
- Risk factors: volleyball players, backpackers
- Arises from upper trunk of brachial plexus (C5-6)
- Points of impingement
 - Suprascapular notch (transverse scapular ligament)
 - Spinoglenoid notch
- Ganglion cyst at spinoglenoid notch assoc with SLAP tears
Motor to supraspinatus and infraspinatus
- Sensory to AC and GH joints

Exam
- Infraspinatus/Supraspinatus atrophy and weakness
- TTP at suprascapular notch
- Complete cervical and neurologic exams

Neurodiagnostic studies
- Non-operative therapy recommended in absence of a well-defined lesion

Clavicle Fractures
- Most common bone fractured in children and adolescents
- Risk of brachial plexus and pulmonary injury
- Proximal, middle, distal third fractures
- Middle third fractures rarely require surgery
- Ortho referral for proximal fractures and type II distal fractures (displaced)
- Sling or figure-of-8 harness
- Watch for tenting of the skin

Scapular Fractures
- High energy trauma
- Associated injuries common (head, lungs, ribs, spine)
- Body, spine, glenoid neck, glenoid fossa, acromion, coracoid process
- Most do well with sling immobilization with early ROM
- Orthopaedic referral
 - Displaced glenoid neck fracture
 - Glenoid fxs involving > 25% of the articular surface or subluxed humeral head
 - Displaced coracoid fxs
 - Displaced acromion fxs
Proximal Humerus Fractures

- Common in elderly with osteoporosis
- Fall on outstretched arm
- Beware of NV injuries (remember your anatomy!)
- X-rays: AP, axillary lateral, scapular-Y

Neer classification
- 4 fragments
 - 1. greater tuberosity
 - 2. Lesser tuberosity
 - 3. Head
 - 4. Shaft
Neer classification: 4 parts
- “One-part” fx: all nondisplaced fractures
 - Less than 1cm displacement and less than 45° angulation
 - 80% of all proximal humerus fractures
- “Two-part” fx: one fragment is displaced
- “Three-part” fx: two fragments are displaced
- “Four-part” fx: all 4 fragments are displaced
- All displaced fxs (Neer 2-4 parts) should be referred for surgical correction
- All Neer one-part fxs can be managed by primary care physicians (except for those with associated NV injury or anatomical neck fxs)

Midshaft Humerus Fractures
- MOI = direct blow or fall
- Torsional force results in spiral fx (suspect physical abuse if seen in children)
- Check NV status, especially radial nerve (wrist/finger extension, dorsal hand sensation)
- Concomitant elbow/shoulder injuries

Treatment
- Initial immobilization with a sling (standard or “collar and cuff”)
- Early ROM with pendulum exercises (within one week)
- May require physical therapy
- d/c sling within 2-4 weeks
- Refer to orthopedics if not progressing
- Complications
 - Neurovascular injury
 - Avascular necrosis of the humeral head
 - Frozen shoulder

Midshaft Humerus Fractures
- Generally treated with closed reduction, use of a hanging arm cast or humerus coaptation splint until fx site is “sticky”, then use of a functional brace
- Avoid excess traction in true transverse fxs
- Can accept angulation (up to 20° AP and 30° medial-lateral angulation)