Microbiology Pearls
CAPA Conference

JoAnn Deasy, PA-C, MPH
San Francisco, CA
jadeasy@sbcglobal.net
Adjunct Lecturer Touro PA Program
California Emergency Physicians Group

Pearls?

• Jewelry: the incomparable pearl has been regarded throughout history as a treasure almost beyond value
• Figuratively: Something that is very choice or precious

Learning Objectives

Microbiology Pearls:
• Relate current issues in microbiology and infectious diseases
• Describe use of the laboratory to determine the etiology of the infectious process
• Recognize properties of medically important microbes

Current Issue: Antibiotic Resistance

• Treatment with antibiotics → dramatic shift in normal flora, resistant genes capable of spreading to a true pathogen
• Greatest R in normal flora is at one day after end of course of ABX
• Six months after treatment, still not at baseline
• Pearl: Ask when last antibiotics, if within 3 months, choose different antibiotic

Role of the Microbiology Lab

- Clarify the presence of infection
- Specify the etiology
- Motivate the appropriate selection of antimicrobial
- Assist in the identification, control, and prevention of nosocomial infections and infections in the community

Determine Etiology of Infection

- Microscopic examination
- Culture
- Immunochemical
- Molecular
Microscopic & Culture

- **Microscopic Examination**
 - Gram stain and wet mounts
 - Timely
 - Presumptive etiology
- **Culture – gold standard**
 - Not timely
 - Depends on quality of specimens and lab's ability to provide favorable conditions for growth

Immunoochemical & Molecular

- **Immunoochemical (serologies)**
 - Monoclonal antibody technology allows production of large amounts of pure antibody which reacts to a specific antigen
 - Enzyme linked immunosorbant assay (ELISA), direct fluorescent antibody, indirect fluorescent antibody
- **Molecular - rapid**
 - Probes
 - Amplification
 - Gene or signal
 - Pulse gel

Microbiology Lab Results

- **Pearl:** All results must be interpreted clinically
 - Dilemma of colonization vs infection
Selected Medically Important Microbes

Respiratory Infections

Respiratory Viruses
- Rhinitis (common cold), pharyngitis, laryngitis
 - Rhinovirus
 - Coronavirus
 - Respiratory syncytial virus (RSV)
 - Parainfluenzae
 - Adenovirus
 - Herpes simplex virus
 - Epstein Barr Virus
- Tracheitis, bronchitis, bronchiolitis, bronchopneumonia
 - Coronavirus
 - Parainfluenzae
 - RSV
 - Adenovirus
 - Influenza A and B

Acute Bronchitis
- Pearl: 90% of cases are caused by viruses
- Antibiotics not indicated unless suspect pertussis
 - Consider ABX if with comorbidity of significant heart or lung disease especially if >65 yrs of age
- Pearl: Colored sputum does not reliably differentiate between bacterial and viral acute bronchitis or other acute lower respiratory infections
COPD Exacerbation

- Causes: bacteria, viruses & air pollution
 - Viruses 30-66%
 - Bacteria 30-50%
- Most common bacterial etiologies
 - Nontypeable Haemophilus influenzae (NTHi)
 - Streptococcus pneumoniae
 - Moraxella catarrhalis
- Other pathogens = Gram negative bacilli
 - Pseudomonas and Enterobacteriaceae
- Gram stain and sputum culture usually not recommended

Antibiotics for COPD Exacerbation

- Most effective antibiotic not known
- Cover the 3 most common pathogens
 - Nontypeable Haemophilus influenzae (NTHi)
 - Streptococcus pneumoniae
 - Moraxella catarrhalis
- Consider risk for Pseudomonas infection

More About S. pneumoniae, NTHi, Moraxella catarrhalis

- Most common causes of acute otitis media
 - S. pneumoniae = most common cause but increasing incidence on NTHi
- Most common causes of acute bacterial sinusitis
 - S. pneumoniae + NTHi = 75%, Moraxella 25%
 - Most common cause of sinusitis = viral
- CAP – S. pneumoniae most common
More About *S. pneumoniae*, *NTHi*, *Moraxella catarrhalis*

- *S. pneumoniae* increasing intermediate resistance to penicillin
- *Haemophilus influenzae* - national incidence of β-lactamase production is 37%
- *Moraxella* 90% (55-100%) produce beta-lactamase
- Pearl: Implications for treatment of acute otitis media in children

Urinary Tract Infections (UTIs)

Uncomplicated Cystitis in Women

- Uncomplicated: premenopausal, non-pregnant, no co-morbidities
- Etiology
 - *Escherichia coli* = 75-95%
 - Other GNR: *Proteus mirabilis, Klebsiella pneumoniae*
 - *Staphylococcus saprophyticus*

Treatment Guidelines for Uncomplicated Cystitis

- Nitrofurantoin 100 mg bid for 5 days
 - Pearl: Do not use nitrofurantoin for pyelonephritis
- Fluoroquinolones efficacious in 3 day dosing but not recommended because should be used for more serious infections
- For cystitis: Threshold of 20% resistance prevalence at which drug no longer recommended for empirical treatment
 - Pyelonephritis = 10% threshold
- Must be familiar with local antibiograms
Local Antibiogram

- Compilation of antimicrobial susceptibilities of selected bacteria
 - Provides statistical information on local level

<table>
<thead>
<tr>
<th>Organism</th>
<th>#</th>
<th>CZOL</th>
<th>CTRX</th>
<th>CTAZ</th>
<th>GEN</th>
<th>TOB</th>
<th>T/S</th>
<th>CIP</th>
<th>P/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli</td>
<td>552</td>
<td>94</td>
<td>95</td>
<td>89</td>
<td>88</td>
<td>63</td>
<td>68</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>148</td>
<td>91</td>
<td>95</td>
<td>95</td>
<td>97</td>
<td>96</td>
<td>82</td>
<td>94</td>
<td>90</td>
</tr>
<tr>
<td>P. Mirabilis</td>
<td>51</td>
<td>90</td>
<td>96</td>
<td>96</td>
<td>90</td>
<td>88</td>
<td>82</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

OP TMP/SMX susceptibility is 68%. OP Cipro susceptibility is 78%. Nitrofurantoin susceptibility is 97% and should only be used for uncomplicated UTIs with CrCl>60ml/min. OP cefazolin (Keflex) susceptibility is 92%
Skin and Soft Tissue Infections (SSTIs)

SSTIs

• Cellulitis
 – Acute infection and inflammatory response in the dermis and subcutaneous tissues
• Erysipelas
 – Upper dermis and superficial lymphatics
 – Causative agents = Streptococci (GABHS)
• Impetigo
• Abscesses
• Folliculitis
• Furunculosis (boils)
• Carbuncles (coalescent boils)

Erysipelas

Impetigo
Cellulitis

Bacteria

- **Common**
 - Group A streptococci (*Streptococcus pyogenes*)
 - Groups B, C, and G β-hemolytic streptococci
 - *Staphylococcus aureus* – MSSA and MRSA
- **Uncommon**
 - *Hemophilus influenzae*
 - *Pseudomonas aeruginosa*
 - *Pasteurella multocida*
 - Anaerobes
 - *Vibrio vulnificus*
 - *Aeromonas*
 - *Erysipelothrix*

Changing Trends

- Visits for cellulitis and soft-tissue infections have increased from 32 to 48 per 1000 population from 1997-2005
- Increase in methicillin resistant *S. aureus*
 - Most common cause of cellulitis when associated abscess

Clues to Causative Organism

- **Streptococci**
 - Absence of abscess, drainage or necrotic lesion
 - Lymphangitis
 - Raised indurated border
 - Peau d’orange appearance of skin
- **Staphylococcus aureus**
 - Associated abscess, draining, necrotic lesion or penetrating trauma
MRSA Abscesses with Cellulitis
Cellulitis: Diagnostic Studies

- Diagnosis is usually made clinically
- Drainage from abscess or weeping wound → culture
- Material from needle aspiration of inflamed skin or skin biopsy can be cultured when no purulence or drainage – rarely done
- Role of blood cultures
 - Less than 5% positive
- CBC
 - Gauge severity of infection
- Creatine kinase (CK)
- Glucose
- Plain x-rays or CT when osteomyelitis is suspected as in diabetic foot ulcer with cellulitis

Antibiotic Therapy

- Empirical therapy is started based on the clinical presentation and morphology of the cellulitis and associated lesions (if any)
- Empirical therapy can be adjusted based on culture results and/or clinical response to treatment

Oral Antibiotic Therapy: Uncomplicated Purulent Cellulitis

- Abscesses must be drained for ABX to be effective
- Staphylococci – MSSA and CA-MRSA
 - Trimethoprim-sulfamethoxazole (Bactrim, Septra)
 - Doxycycline / Minocycline
 - Linezolid (Zyvox)
 - One of few oral ABX adequately tested in comparative trials with parenteral vancomycin
 - Very expensive, not 1st line
 - Clindamycin
 - Inducible resistance
 - Resistance increasing among S. aureus

Susceptibility of Staph Isolates

<table>
<thead>
<tr>
<th></th>
<th>MSSA</th>
<th>CA-MRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafcillin</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>70%</td>
<td>14%</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>90%</td>
<td>30%</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>95%</td>
<td>98%</td>
</tr>
<tr>
<td>TMP/SMX</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>85%</td>
<td>77%</td>
</tr>
<tr>
<td>Linezolid</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Treatment of Staphylococci

• Pearl: All antibiotics that are effective against MRSA are effective against MSSA
• Nafcillin predicts cephalasporin sensitivity
• Pearl: MRSA resistant to all β-lactam AXB

Oral Antibiotic Therapy: Uncomplicated Non-Purulent Cellulitis

• Streptococci
 – Penicillin
 – Amoxicillin
 – Cephalexin (Keflex)
 – Clindamycin
 • Penicillin allergic patients
 • Approximately 5% of streptococci are resistant
 • Staphylococci – MSSA and CA-MRSA

Empiric Outpatient Treatment

• Therapy to cover Beta-hemolytic streptococci and MSSA and MRSA
 – Monotherapy
 • Clindamycin 300 mg every 6 hours
 • Linezolid 600 mg every 12 hours
 – Dual therapy
 • PCN or Cephalexin or Dicloxacillin: 500 mg every 6 hours
 PLUS
 • Trimethoprim-sulfamethoxazole (2 DS every 12 hours) or doxycycline (100mg every 12 hours)

Parenteral Therapy

• Streptococci and MSSA
 – Semi-synthetic penicillins: nafcillin, oxacillin
 – Cephalosporins: ceftriaxone, cefazolin, cefuroxime
 – Penicillin allergic: clindamycin
• MRSA
 – Vancomycin, daptomycin (Cubicin),
 tigecycline (Tygacil), linezolid (Zyvox)
Other Considerations: ABX Therapy

- Facial cellulitis
 - *Hemophilus influenzae* particularly in children
- Human and animal bites
 - Human: *Eikenella corrodens*, anaerobes, *viridans streptococci*
 - Animal: usually polymicrobial: *Pasturella multocida*, *Streptococci*, *S. aureus*, anaerobes
- Immunocompromised patients
 - Cultures important, empiric broad spectrum
 - Infectious disease consult

Take Home Points

- If suspect infectious disease as cause of patient’s symptoms, consider most likely etiologic agents
- If bacteria, choose abx based on local antibiograms, spectrum and potential toxicity to patient
- Ask yourself if microbiologic diagnostic testing is indicated