Community-Acquired Bacterial Pneumonia: Is There Anything New?

Hans Liu, M.D., FACP
Infectious Disease Specialist
Bryn Mawr Medical Specialists
Bryn Mawr, Pennsylvania
Professor of Medicine
Sidney Kimmel School of Medicine
Thomas Jefferson University
Philadelphia, Pennsylvania

This presentation is sponsored by:

and supported by an educational grant from Cempra Pharmaceuticals

Sign up for free membership at pcrg-us.org

The Primary Care Respiratory Group (PCRG) is a national educational initiative providing comprehensive respiratory disease education. PCRG’s mission is to provide a representative forum for primary care clinicians involved in respiratory disease management and raise standards of patient care through the dissemination of best practices, education programs, and communication among members.
Disclosure:
Dr. Liu discloses that he is on the advisory board for Cempra and Daiichi Sankyo

CME:

Learning Objectives
After participating in this activity, the primary care physician will be able to:
• Describe trends in the microbiology of community-acquired pneumonia in the United States and the impact on clinical outcomes
• Select evidence-based empiric antibiotic therapy based on national susceptibility trends and ideally on local patterns
• Initiate broad-spectrum antibiotic therapy in appropriate patients
• Modify therapy in patients who don’t respond to initial antibiotic therapy
• List medications on the horizon for community-acquired bacterial pneumonia
Following an episode of CABP, it takes an adult age ≥50 years an average of ___ days to achieve full productivity.

1. 9
2. 15
3. 21
4. 27

Retrospective analysis of adults with CAP initially managed in a primary care clinic showed all of the following to predict non-responsiveness except:

1. Bilateral rales
2. Former smoker
3. Initial presentation to urgent care
4. Myalgia

Several systematic reviews and meta-analyses since 2007 show which of the following is preferred as initial empiric therapy in the outpatient management of CABP?

1. Macrolide
2. β-lactam + macrolide
3. β-lactam + respiratory fluoroquinolone
4. There is no preferred empiric therapy as the data are inconsistent
Only 2 Antibiotics Approved for Community-Acquired Bacterial Pneumonia Since 2007

Tigecycline
(2009)

Ceftaroline fosamil
(2010)

Both are injectable antibiotics

So is there really anything to talk about?
Yes!
Overview

- Epidemiology of community-acquired pneumonia
 - Still significant cause of morbidity and mortality
 - Costs and hospital length of stay are concerns
 - New diagnostic tests for wider array of pathogens
 - Pathogen susceptibility continues to change
 - New definition of community-acquired bacterial pneumonia
 - Collateral damage driving therapeutic change
 - New antibiotics on the horizon

Case Study

- RD is a 59-year-old male who presents to his primary care physician with dyspnea on exertion and cough
- History, physical examination, and chest X-ray suggest a diagnosis of community-acquired bacterial pneumonia
- A macrolide antibiotic is prescribed pending laboratory confirmation
- Four days later, RD returns complaining of continued symptoms that now include fever
- Do you admit or treat as an outpatient?
- If treated as an outpatient,
 - Do you culture?
 - What antibiotic(s) do you start?
 - What do you do if he doesn’t get better?

Epidemiology and Burden

- Incidence
 - 950,000 cases/year in adults age <65 y
 - 1.3 million cases/year in adults age ≥65 y
 - Incidence has declined since introduction of PCV13
 - 3y prospective study of nearly 1 million pediatric ED visits
 - Incidence of CAP decreased 16%
 - Incidence of pneumococcal CAP decreased 63%
 - 28,575 episodes: 72% managed as outpatient
 - Episode length: 31.8 d (inpatient), 10.2 d (outpatient)
 - Cost (all-cause total)
 - Inpatient: $11,148 to $51,219
 - Outpatient: $1,048 to $5,613

Epidemiology and Burden (cont)

- In adults age ≥50 y
 - Time to resolution of symptoms >3 weeks
 - Absenteeism 13 days
 - 21 days before achieving full productivity
 - 8th leading cause of death* and leading cause of infection-related death in U.S.²
- Persons with CAP have a greater risk of 10-year mortality vs controls (hazard ratio 1.65³)

*Pneumonia and influenza combined

Etiology of CAP

- No pathogen detected
- Bacterial only
- Viral-viral
- Fungal or mycobacterial
- Bacterial-viral (3%)

N=2259 adults hospitalized with radiographic evidence of CAP in 5 U.S. hospitals, January 2010 through June 2012

Etiology of CAP (cont)

- Multiple pathogen
- Single pathogen
- No pathogen detected

N=2259 adults hospitalized with radiographic evidence of CAP in 5 U.S. hospitals, January 2010 through June 2012
Macrolide-resistant S. pneumoniae, United States, 2012

Although the number of isolates is small (N=91), it shows the wide geographic variability in susceptibility of M. pneumoniae to a macrolide.

City (number of M. pneumoniae respiratory isolates tested)
Collection period: August 2012 – April 2014
Etiology of CABP

Does not include viruses, fungi, etc.

Common bacteria
- S. pneumoniae
- H. influenza
- S. aureus
- Group A streptococci
- M. catarrhalis

‘Atypical’ bacteria
- C. pneumoniae
- M. pneumoniae
- L. pneumophila

Other
- Community-associated MRSA
- Gram-negative bacilli
 - E. coli
 - Ps. aeruginosa

Definition of CABP

- Acute bacterial infection of the pulmonary parenchyma
- Associated with chest pain, cough, sputum production, difficulty breathing, chills, rigor, fever, or hypotension
- Accompanied by the presence of a new lobar or multilobar infiltrate on a chest radiograph
- Acquired in the community vs hospital or healthcare facility

A patient with a Pneumonia Severity Index of II

1. Can be managed as an outpatient
2. Should be admitted to the ICU
3. Has an average mortality rate of 7%
4. Is most likely infected with a Gram-negative pathogen

Comparison of Care Recommendations Based on PSI vs CURB-65 Scores

<table>
<thead>
<tr>
<th>PSI Risk Class</th>
<th>No. of Points</th>
<th>% Mortality</th>
<th>Recommended Site of Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>< 7</td>
<td>0.1</td>
<td>Outpatient</td>
</tr>
<tr>
<td>II</td>
<td>7-20</td>
<td>0.6</td>
<td>Outpatient</td>
</tr>
<tr>
<td>III</td>
<td>21-40</td>
<td>2.8</td>
<td>Outpatient or brief inpatient</td>
</tr>
<tr>
<td>IV</td>
<td>41-100</td>
<td>8.2</td>
<td>Inpatient</td>
</tr>
<tr>
<td>V</td>
<td>>100</td>
<td>29.2</td>
<td>Inpatient; consider ICU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURB-65 Score</th>
<th>0 or 1</th>
<th>2 or 3</th>
<th>>3</th>
<th>Likely Suitable for Home Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><3</td>
<td></td>
<td></td>
<td>Likely suitable for home treatment</td>
</tr>
<tr>
<td>3-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Absence of risk factor; †Options may include short inpatient stay or as hospital-supervised outpatient; ‡Assess for ICU admission, especially if CURB-65 score = 3

Limited Value of Signs and Symptoms in Determining Etiology

Limited Association of Common Comorbidities with Etiology

Molecular Testing vs Culture Improves Pathogen Detection

Bars are percentages of cases with a positive test result relative to the number of cases with a valid test.

Outpatient Treatment, 2007

- Previously healthy and no risk for drug-resistant S. pneumoniae
 - Macrolide
 - Doxycycline
- Presence of comorbidities or other risks for drug-resistant S. pneumoniae
 - Respiratory fluoroquinolone
 - β-lactam + macrolide
- High rate (>25%) of macrolide-resistant S. pneumoniae (MIC ≥16 mcg/mL)
 - Respiratory fluoroquinolone, ceftriaxone, cefpodoxime, cefuroxime, doxycycline

Monotherapy vs Combination Therapy

- β-lactam vs β-lactam/macrolide
 - β-lactam vs β-lactam/macrolide vs FQ
- FQ vs β-lactam/macrolide
- FQ vs macrolide vs FQ/β-lactam vs macrolide/β-lactam
- Macrolide vs non-macrolide

Similar outcomes and no clear best regimen for empiric therapy.
Collateral Damage

- Typically refers to ecological adverse effects of antibiotic therapy
- Specifically, the selection of drug-resistant organisms and the unwanted development of colonization or infection with multidrug-resistant organisms
- Should it also include other unintended, serious consequences of antibiotic therapy?
 - Fluoroquinolone-tendinopathy, QTc prolongation
 - Macrolide-hepatotoxicity, QTc prolongation

Case Study

- RD is a 59-year-old male who presents to his primary care physician with dyspnea on exertion and cough
- History, physical examination, and chest X-ray suggest a diagnosis of community-acquired bacterial pneumonia
- A macrolide antibiotic is prescribed pending laboratory confirmation
- Four days later, RD returns complaining of continued symptoms that now include fever
 - Do you admit or treat as an outpatient?
 - If treated as an outpatient,
 - Do you culture?
 - What antibiotic(s) do you start?
 - What do you do if he doesn’t get better?

Factors Associated with Non-Responsive CAP in Primary Care

- Retrospective analysis of 250 adults with CAP initially managed in primary care clinic
- 85 cases (ie, non-responsive), 165 controls
- Non-responsive CAP was defined as worsening symptoms after 4 days or no improvement within 10 days of starting antibiotic therapy
- In the 85 cases at initial visit:
 - 80% had a chest X-ray, 3% additional testing
 - Initial treatment: macrolide (33%), quinolone (33%), no antibiotic (11%), amoxicillin/amoxic-clav (6%)
- Factors predicting non-responsiveness
 - Former smoker (odds ratio 2.27)
 - Initial presentation to urgent care (odds ratio 2.10)
 - Myalgia (odds ratio 2.79)

What is the “state of the art” in CAP/CABP Management?

- Suspect diagnosis based on symptoms
- Know risk factors for poor outcome (clinical: PSI, CURB-65)
- Send labs: CBC, CMP, CXR, sputum or other cultures
- Outpatient management or admit to hospital?

Choose antibiotics:

- No antimicrobial (healthy host, viral, likely self-limited)
- Narrow (macrolide?) if viral vs. mycoplasma (but resistance?)
- Narrowish (amox-clav, TMP-SMX)
- Broad-spectrum (fluoroquinolone or macrolide + beta-lactam)

- If patient not improving:
 - Broaden further (vancomycin, 3rd generation-cephalosporin, carbapenem ???)
 - Perform diagnostic procedure
 - Broader Rx, hospital stay ⇒ more “collateral damage”

Antibiotics on the Horizon

- Cethromycin - ketolide
- Omadacycline - tetracycline
- Sitafloxacin - fluoroquinolone
- Lefamulin - pleuromutilin
- Solithromycin - fluoroketolide

Cethromycin

- Oral ketolide
- Potent activity against S. pneumoniae
- FDA denied approval in 2009

Review used updated efficacy standards

- 2 Phase III studies vs clarithromycin in mild/moderate CAP with clinical cure rates (ITT) of
 - CL05-001 (N=584): 83.1% vs 81.1%
 - CL06-001 (N=522): 82.9% vs 88.5%

Omadacycline

- Oral and IV tetracycline
- Potent activity against resistant Gram-positive bacteria, including *S. pneumoniae* and MRSA
- Comparable to tigecycline
- Good oral bioavailability
- No significant nausea/vomiting

Sitafloxacin

- Oral fluoroquinolone
- High activity against *S. pneumoniae, ESBL-producing E. coli* and *K. pneumoniae*
- 7 days of treatment resulted in clinical improvement (94.2%) and bacteriologic cure (95.4%) in *S. pneumoniae* CABP (N=72)
- Photosensitivity in Caucasians a concern

Lefamulin

- Oral and IV pleuromutilin antibiotic
- Potent activity against multi-drug-resistant strains of *S. pneumoniae*
- macrolide-sensitive and macrolide-resistant *M. pneumoniae*
- Granted qualified infectious disease product/fast track status by FDA
- LEAP2 study- comparison with moxifloxacin in moderate CABP (in progress)

Solithromycin

- Oral and IV floroketolide
- Highly active against
 - macrolide-resistant S. pneumoniae\(^1,2\)
 - M. catarrhalis\(^2\)
- 2-fold less active than azithromycin against H. influenzae\(^2\)
- Good activity against S. aureus, including MRSA\(^2\)
- In patients with moderate/moderately severe CABP, solithromycin demonstrated non-inferiority vs levofloxacin\(^3\) and moxifloxacin\(^4\) in achieving symptom response at 72 hours

Summary and Conclusions

- Community-acquired pneumonia (CAP) remains a significant cause of morbidity and mortality in the U.S.; this entails high use of health care resources
- There is new appreciation of a wider array of CAP pathogens, notably viruses (some treatable)
- In community-acquired bacterial pneumonia (CABP) pathogen susceptibility is changing (e.g., Streptococcus pneumoniae, mycoplasma)
- Antibiotic selection driven by difficulty diagnosing pathogens, need to optimize coverage AND avoid toxicity
- Few new antibiotics over last 10 years for CABP; new antibiotics are on the horizon

Following an episode of CABP, it takes an adult age ≥50 years an average of ___ days to achieve full productivity

1. 9
2. 15
3. 21
4. 27
Retrospective analysis of adults with CAP initially managed in a primary care clinic showed all of the following to predict nonresponsiveness except:

1. Bilateral rales
2. Former smoker
3. Initial presentation to urgent care
4. Myalgia

Several systematic reviews and meta-analyses since 2007 show which of the following is preferred as initial empiric therapy in the outpatient management of CABP:

1. Macrolide
2. β-lactam + macrolide
3. β-lactam + respiratory fluoroquinolone
4. There is no preferred empiric therapy as the data are inconsistent

Thank you
Questions & Answers