Next stop: a new kind of bus ride on Vermont.
Welcome

https://www.youtube.com/watch?v=JGc3cJutk80
Purpose of Tonight’s Meeting

> Provide a study overview
> Solicit feedback and listen to your comments on:
 • Proposed BRT options planned for Vermont
 • Thoughts on future conversion to rail
 • Other community improvements to consider
Measure M

> November 2016 – Approval of Measure M sales tax with 71.15% support
 • Meet needs of increasing traffic congestion, air pollution and growth

> Vermont BRT Measure M Project
 • $425 M for Vermont BRT
 • Anticipated BRT opening FY28 – FY30
 • Potential rail conversion after 2067
> January/May 2016 – Vermont BRT Stakeholder meetings

> January 2017 – Open house on initial findings
 • Interest in rail expressed

> March 2017 – Board directed staff to:
 • Proceed with BRT as near term improvement
 • Study potential future rail alternatives
Corridor Overview

- 12.4 miles
- Second busiest bus corridor
 - 45,000 daily boardings
- Heavy traffic resulting in slow service/poor on-time performance
- Connects to:
 - Major rail and bus lines
 - Key activity centers
- Varying ROW widths (80 - 200 feet)
Project Goals/Objectives

> Improve service performance
 • Reduce passenger travel times
 • Improve service reliability
 • Increase ridership

> Enhance customer experience
 • Better passenger amenities
 • Improve pedestrian/bicycle access

> Invest in the community
 • Improve mobility & livability
BRT – A New Kind of Ride

LIGHT RAIL ON TIRES

Bus Rapid Transit (BRT) is one of the technologies that could be used to implement Rapid Transit Service in key, heavily traveled corridors. BRT is essentially light rail on rubber tires – offering almost identical services features and characteristics as light rail, but with a significantly lower cost. BRT is intended to move large numbers of people quickly and efficiently to their destinations.

FAST AND RELIABLE SERVICE

- Dedicated lanes and signal priority
- Could run as frequently as every 5 minutes
- Stops every 1/2 mile to 1 mile (less frequently than local bus)
- Real time travel information

CONVENIENT

- Level boarding
- Off-board fare collection
- Multiple doors for quick boarding

MODERN

- Vehicles are often longer articulated and specially designed
- Latest energy efficient technologies

COMFORTABLE

- Spacious and comfortable interiors
- Enhanced stations (not stops)
- Amenities like Wi-Fi, bike racks, benches

WiFi
Rail Conversion/Feasibility Study Approach

Future Baseline Conditions

Refine BRT Concepts

6 Preliminary Rail Concepts
(Ridership, Conceptual Engineering, Grade Crossing/Junction Capacity, Phasing, Corridor Fit)

Analyze 3 Rail Concepts

Ridership Thresholds for Conversion

Potential to Support Transit Oriented Communities

Urban Design Concepts

Final Report
Recap of Initial BRT Concepts

> Identified 4 initial concepts
> Two determined to be most promising

Side Running BRT

Side/Center Running BRT
Side Running BRT

- Converts traffic lanes (adjacent to parking) to bus lanes
- Loss of approximately 446 all-day parking spaces (22% of total parking)
- Potential 36% increase in ridership
- 27% improvement in travel time
Side/Center Running BRT

> North of Gage - converts 8.2 miles of traffic lanes (adjacent to parking) to bus lanes

> South of Gage - converts center traffic lanes to bus lanes (4.2 miles)

> Loss of approximately 464 all-day parking spaces (23% of total parking)

> Potential 36% increase in ridership

> 28% improvement in travel time
BRT Considerations for Rail Conversion

> Alignments
 • Width of BRT lane
 • Horizontal curves
 • Vertical curves (e.g. grade seps)
 • Vertical clearances

> Stations/Platforms
 • Ability to extend station platform
 • Design to kit-of-parts
Initial Six Rail Concepts Considered

> 2 Light Rail concepts center or side-running
> 1 Tram/Streetcar concept at-grade side-running
> 3 Heavy Rail concepts
 • Connecting with Red Line
 • Connecting with Purple Line
 • Ending at Wilshire/Vermont

Metro®
Concept 1: Light Rail

> Center Running
> High Floor

 Vertical alignment
 - At-grade south of Gage Av
 - TBD north of Gage Av
 - Grade separation at Expo/Vermont
Concepts 2 and 3: Light Rail & Streetcar

> Light Rail
 • Side-Running
 • Low Floor
 • Primarily at-grade

> Tram/Streetcar
 • Side-Running
 • At-grade
Concept 4: Heavy Rail

> Connect with Purple Line for south/west alignment
Concept 5: Heavy Rail

> Connect with Red Line to create north/south line
Concept 6: Heavy Rail

> Terminate at Wilshire/Vermont
> Facilitate transfers to Red or Purple Line
Evaluation Screening Criteria

- Customer experience
- System connectivity
- System operability and reliability
- Passenger capacity
- Cost
- Construction impacts and service disruption
What is TOC?

Focus on integrating transportation and land use planning in support of livable communities that are compact, dense, mixed-use, walkable, engaging and resilient.
Components of TOC

- Land Use Mix
- Sense of Place
- Sustainability
- Health Benefits
- Urban Density
- Mobility Choices
Next Steps

- May 2018 – Reduce to three rail concepts for more analysis
- Refine BRT concepts
- October 2018 – Return to discuss study findings
- December 2018 – Complete Study
- Mid 2019 – Begin environmental review of Vermont BRT
Contact

Lilian De Loza-Gutierrez
Community Relations Manager
213.922.7479
vermontbrt@metro.net

www.metro.net/projects/vermont-corridor
Thank You