HCM 2010: FREEWAY FACILITIES

PRAVEEN EDARA, PH.D., P.E., PTOE UNIVERSITY OF MISSOURI - COLUMBIA EMAIL: edarap@missouri.edu

OUTLINE

Freeway facility components

Methodology for analyzing freeway facilities

7-step procedure to compute facility LOSExercise problem

FREEWAY SEGMENTS

- Three types of freeway segments
 - Freeway merge and diverge segment
 - Freeway weaving segment
 - Basic freeway segment

Merge and diverge segments: "Segments in which two or more traffic streams combine to form a single traffic stream (merge) or a single traffic stream divides to form two or more separate traffic streams (diverge)."

MERGE SEGMENT (I-70@ RANGELINE ST IN COLUMBIA, MO)

DIVERGE SEGMENT (I-70@ ST. CHARLES RD IN COLUMBIA, MO)

FREEWAY SEGMENTS

- Weaving segments: "Segments in which two or more traffic streams traveling in the same general direction cross paths along a significant length of freeway without the aid of traffic control devices (except for guide signs)."
- Formed when
 - A diverge segment closely follows a merge segment or
 - A one-lane off-ramp closely follows a one-lane on-ramp and the two are connected by a continuous auxiliary lane.
- Basic freeway segments: "All segments that are not merge, diverge, or weaving segments."

WEAVING SEGMENT (I-70 BETWEEN STADIUM BLVD. AND RANGELINE ST. IN COLUMBIA, MO)

INFLUENCE AREAS: WEAVING

 Weaving influence area: Base length of weaving segment + 500 ft upstream of entry + 500 ft downstream of exit point of weaving segment

INFLUENCE AREAS: MERGE AND DIVERGE

- Merge influence area: From the point where edges of travel lanes of merging roadways meet + 1500 ft downstream of that point
- Diverge influence area: From the point where edges of travel lanes of merging roadways meet + 1500 ft upstream of that point

EXERCISE PROBLEM

Identify the different freeway segments in the below figure
Identify their influence areas

METHODOLOGY FOR ANALYZING FREEWAY FACILITIES

7-step procedure

- Step 1: Input data (demand, geometry, time-space domain)
- Step 2: Adjust demand data
- Step 3: Compute segment capacities
- Step 4: Adjust segment capacities
- Step 5: Compute demand-to-capacity ratios
- Step 6: Compute service measures, LOS for segments
- Step 7: Compute freeway facility service measures and LOS

STEP 1: INPUT DATA

Demand

- Demand flow rates for each segment and time period
- Analysis based on multiple consecutive 15-min periods
- Demand needed for entering freeway mainline, on-ramp, and off-ramp flow
- Percent trucks, RVs and driver population factor also needed

Geometrics

- Number of lanes, average lane width, lateral clearance, terrain, FFS
- Geometrics of merge, diverge, and weaving segments

STEP 1: INPUT DATA

Time-space domain is established for analysis

- Specify the freeway sections included in the defined facility
 - A freeway section boundary occurs whenever a change in demand occurs (on-ramp, lane addition, etc)
- Specify the *time intervals* for which analysis is conducted

Time	Section							
Step	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

STEP 1: INPUT DATA

Converting sections to analysis segments

- Basic freeway, merging, diverging, weaving segment
- An example of identifying analysis segments:

The facility has three on-ramps and three off-ramps. Geometric details are given in Exhibit 10-26.

Segment No.	1	2	3	4	5	6	7	8	9	10	11
Segment type	В	ONR	В	OFR	В	B or W	В	ONR	R	OFR	В
Segment length (ft)	5,280	1,500	2,280	1,500	5,280	2,640	5,280	1,140	360	1,140	5,280
No. of lanes	3	3	3	3	3	4	3	3	3	3	3

Note: B = basic freeway segment, W = weaving segment, ONR = on-ramp (merge) segment, OFR = off-ramp (diverge) segment, R = overlapping ramp segment.

STEPS 3 AND 4: SEGMENT CAPACITIES

Step 3: Chapters 11 to 13 are used to determine capacities for basic freeway segment, weaving segment, and merge/diverge segments

Step 4: Adjust segment capacities

- Capacity reduction due to work zones (short-term and long-term)
- Capacity reduction due to lane width reduction
- Capacity reduction due to weather and other environmental conditions
- Capacity reduction due to traffic accidents and vehicle breakdowns

STEP 5: COMPUTE DEMAND-TO-CAPACITY RATIOS

- Demand-to-capacity $\left(\frac{V_d}{C}\right)$ ratio is calculated for each cell in the timespace table
- Cell values carefully reviewed for any $\frac{V_d}{C} > 1.00$
- If any boundary cells have a $\frac{V_d}{c}$ >1.00 any further analysis may be flawed
- If any interior cells have a $\frac{V_d}{C} > 1.00$
 - Both undersaturated and oversaturated conditions exist inside the facility
 - Analysis of oversaturated conditions is more complex due to interactions between freeway segments and shifting of demand in both time and space

STEP 6: COMPUTE SEGMENT SERVICE MEASURES

- In this workshop, we'll do an example on undersaturated conditions
- Step 6a in the methodology
 - No cells have $\frac{V_d}{C} > 1.00$
 - Each segment analysis using methods described in chapters 11 to 13 to compute density *D* and space mean speed *S*
 - LOS determined based on the density value for each time interval

Level of Service	Density (pc/mi/ln)
Α	≤11
В	>11-18
С	>18-26
D	>26-35
E	>35-45
F	>45 or
	any component <i>v_a/c</i> ratio > 1.00

STEP 7: COMPUTE FACILITY SERVICE MEASURES AND LOS

Average density for the freeway facility is estimated based on segment densities for each time interval

$$D_F = \frac{\sum_{i=1}^{n} D_i \times L_i \times N_i}{\sum_{i=1}^{n} L_i \times N_i}$$

 D_F = average density for the facility (pc/mi/ln),

 D_i = density for segment i (pc/mi/ln),

 L_i = length of segment i (ft),

 N_i = number of lanes in segment i, and

n = number of segments in the defined facility.

STEP 7: COMPUTE FACILITY SERVICE MEASURES AND LOS

♦ Facility space mean speed S

$$S(t = 1) = \frac{\sum_{i=1}^{11} SF(i,1) \times L(i)}{\sum_{i=1}^{11} SF(i,1) \times \frac{L(i)}{U(i,1)}}$$

SF(i, t) = flow in segment i in interval t

L(i) =length of segment i

U(i, t) = space mean speeds in segment *i* in interval t

EXERCISE PROBLEM

- Evaluation of an undersaturated facility
- A 6-mile urban freeway facility consisting of 11 analysis segments
- What is the operational performance and LOS of the facility?

Segment No.	1	2	3	4	5	6	7	8	9	10	11
Segment type	В	ONR	В	OFR	В	B or W	В	ONR	R	OFR	В
Segment length (ft)	5,280	1,500	2,280	1,500	5,280	2,640	5,280	1,140	360	1,140	5,280
No. of lanes	3	3	3	3	3	4	3	3	3	3	3
Note: D - basis fraguant assemble to warving segment OND - on ramp (morge) segment OFD - off ramp											

Note: B = basic freeway segment, W = weaving segment, ONR = on-ramp (merge) segment, OFR = off-ramp (diverge) segment, R = overlapping ramp segment.

