Establishing Connectivity in Transportation: Connected Vehicle research in the U.S.

63rd Annual Missouri Traffic and Safety Conference
Columbia, MO
May 16, 2012
James Pol, PE, PMP
Team Leader, Program Management and Evaluation
USDOT Intelligent Transportation Systems (ITS) Joint Program Office
Tracking Our Success

- Investment in ITS has nearly tripled
Consumer Forces on Communications and ITS

ITS Research = Multimodal and Connected

Drivers/Operators

Vehicles and Fleets

Connectivity

Wireless Devices

Infrastructure
What is the Connected Vehicle Program

- Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications for:
 - Crash prevention
 - Improved mobility
 - Environmental sustainability

• Connected vehicle capability addresses over 80% of unimpaired crash scenarios

• Encompasses autos, buses, and trucks
 - Partnership among RITA, NHTSA, FHWA, FMCSA, and FTA
What is the Connected Vehicle Program

- Uses wireless communications
 - Dedicated short-range communications (DSRC) technology using FCC-dedicated spectrum that is essential for safety applications

- Other communications types for non-safety applications

- Research is maturing such that NHTSA has committed to an agency decision regarding whether the safety technology is sufficiently developed to support rulemaking
Fully Connected Vehicle

- latitude, longitude, time, heading
- angle, speed, lateral acceleration,
- longitudinal acceleration, yaw rate,
- throttle position, brake status,
- steering angle, headlight status,
- wiper status, external temperature,
- turn signal status, vehicle length,
- vehicle width, vehicle mass,
- bumper height
Why It Matters

Up to **80%** of non-impaired crash types may be impacted by connected vehicle technology

Source: NHTSA

Based on initial estimates & studies. Actual benefits are not determined at this time.
ITS Research Program Components

Applications
- **Safety**
 - V2V
 - V2I
 - Safety Pilot
- **Mobility**
 - Real Time Data Capture & Management
 - Dynamic Mobility Applications
- **Environment**
 - AERIS
 - Road Weather Applications

Technology
- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy
- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues

U.S. Department of Transportation
Key Program Objectives

- 2013 Decision on Vehicle Communications for Safety (light vehicles)

- 2014 Decision on Vehicle Communications for Safety (heavy vehicles)

- Future Guidance on Infrastructure Implementation
NHTSA Agency Decision

- Possible decision options include:
 - **Rulemaking** on minimum performance requirements for vehicle communications for safety on new vehicles
 - Inclusion in NHTSA’s **New Car Assessment Program** to give car makers credit for voluntary inclusion of safety capability in new vehicles
 - **More research** required
NHTSA Agency Decision (continued)

- Data will determine NHTSA’s action for the 2013 decision point:
 - Simulation and modeling efforts based upon previous field operational tests
 - Data collection from V2V test track testing
 - Empirical data obtained from Safety Pilot
 - Driver clinics (user acceptance)
 - Model deployment activities (safety effectiveness)
- A key factor for the NHTSA decision will be the need for, and timing of, necessary infrastructure for communication security (still undefined)
User Acceptance -- Driver Clinics

- 6 locations across the U.S.
- 100 drivers per location
- Experience crash warnings
 - Forward Crash Warning
 - Emergency Brake Light
 - Blind Spot Warning
 - Lane Change Warning
 - Intersection Assist
 - Do Not Pass Warning
Model Deployment

• Major road test and real-world implementation taking place from 2011 thru 2013, involving:
 □ Approximately 3,000 vehicles
 □ Multiple vehicle types
 □ Fully integrated systems and aftermarket devices
 □ Roadside infrastructure
 □ System-wide interoperability testing
• Also to test
 □ Prototype security mechanisms
 □ Device certification processes
Safety Pilot Objectives

- Generate empirical data for supporting 2013 and 2014 decisions
- Show capability of V2V and V2I applications in a real-world operating environment using multiple vehicle types
- Determine driver acceptance of vehicle-based safety warning systems
Safety Pilot Objectives (Continued)

- Assess options for accelerating the safety benefits through aftermarket and retrofit safety devices
- Extend the performance testing of the DSRC technology
- Collect lots of data and make it available for industry-wide use
- Let others leverage the live operating environment
Connected Vehicle Safety Program
Partners and Contractors

Vehicle Manufacturers
- BMW
- GM
- VOLVO
- HONDA
- DAIMLER
- Daimler Trucks North America
- TOYOTA
- NISSAN
- CHRYSLER
- HYUNDAI
- KIA
- FREIGHTLINER

USDOT
- U.S. Department of Transportation
- NHTSA
- Federal Motor Carrier Safety Administration
- Federal Highway Administration
- the VOLPE Center
- FTA

Academia
- UGPTI
- UMTRI
- UNIVERSITY OF IOWA
- GEORGE MASON UNIVERSITY
- MONTANA STATE UNIVERSITY
- PATH
- CVPC

Public Agencies
- MDOT
- Michigan Department of Transportation
- Oakland County
- ADOT
- NYSDOT
- Oak Ridge National Laboratory
- MCDOT

Industry
- noblis
- Booz Allen Hamilton
- Telcordia
- Siemens
- Visteon
- Delcan
- kapsch
- DGEN

Associations/Standards Developers
- ATR
- ITE
- IEEE
- APTA
- SAE International
- ITS America
- MacroSys
- ARADA Systems
- Cognia
- Cohda Wireless
- ITRI
- Industrial Technology Research Institute
- ARINC
- OmniAir
- MITI
- TIA
- Siemens
- NHTSA
- STD
- Visteon
- Delcan
- kapsch
- DGEN
- SAE International
- ITS America
- MacroSys
- ARADA Systems
- Cognia
- Cohda Wireless
- ITRI
- Industrial Technology Research Institute
- ARINC
- OmniAir
- MITI
- TIA
- Siemens
- NHTSA
- STD
- Visteon
- Delcan
- kapsch
- DGEN

U.S. Department of Transportation

17