3D Model-based Planning-Design-Construction-O&M
Best Practices for Transportation Project Delivery:
Focus on Traffic and Safety for DOTs

Lance Parve, MSEng, PG
Design-Construction Engineer, SEF CIM Coordinator
Wisconsin DOT SE Freeways Design-Construction
Missouri DOT Traffic and Safety Conference
Bio:

Lance Parve, MSEng, P.G.
Mr. Parve works as a Sr. Project Engineer/CIM Coordinator for the WisDOT in SE Freeways. His work involves planning, design, and construction of transportation projects greater than $500 million and also provides CIM-CAD-GIS, 3D technologies, and LiDAR survey coordination and support. Working for WisDOT since 2007 involving public sector work, with 15 years previous involvement in private sector civil and environmental infrastructure work, he has been involved in numerous successful planning, design, and construction mega-major transportation projects at WisDOT. He has a MS Engineering degree, MS Certificate Urban Planning GIS degree, and a BS Geological Sciences degree from the UW-Milwaukee. Additionally, he serves as Co-chairperson of the CIM-VDC Subcommittee of the National Academy of Sciences Transportation Research Board (TRB) ABJ95 Visualization in Transportation Committee.

Contact: lance.parve@dot.wi.gov
Phone: 262-548-8702 / 414-731-5375

Contact: christopher.hager@dot.wi.gov
Phone: 262-521-4433

Contact: brian.dupont@dot.wi.gov
Phone: 414-940-9652
WisDOT Transportation Infrastructure Design
Moving from 2D to Robust 3D Models
Design & Construction Best Practice Workflows: WisDOT SE Freeways

Where we are going

2D CAD Models
Object Features
Objects Not Intelligent
No 3D TIN-DTM Surfaces
Geospatial
Multi Disciplinary 2D Project-based

3D CAD Models
Object Features
Objects Not Intelligent
3D TIN-DTM Surfaces
Geospatial
Multi Disciplinary 3D Project-based

3D CIM Collaboration Models
Intelligent Subassembly Features
Collaborative 3D CIM Databases
3D TIN-DTM-3D Face Surfaces
Geospatial
Collaborative Multi Disciplinary 3D Project-based

3D CIM Integrated Collaboration Models
Intelligent Subassembly Features
Integrated 2D-3D-4D-5D-xD CIM Databases
3D TIN-DTM-3D Face Surfaces
Geospatial
Integrated Collaboration Multi Disciplinary 3D Life-cycle-based

Where we are

ISOLATED

COLLABORATIVE

INTEGRATED
Road & Bridge Design Best Practice Workflows: WisDOT SE Freeways

- Strategic Planning for WisDOT SE Freeways
 “plans are useless but planning is essential”
 - Strategic Goals: Organizational Clarity, Common Shared Vision, Model the Way, Align Objectives, Pull Together, Build Trust, Inspire Passion, Challenge the Process, Enable Others to Act
 - Core Goals: Mobility, Accountability, Preservation, Safety, & Service
Key findings/Best practices for Transportation Infrastructure

- People/Workforce + Organization/Process + Tools/Technologies = Success
- Cost Benefits Analysis/Return on Investment Focus = $, Time, & Quality
- PS&E 3D Model-based Digital Project Delivery = New Workflows
Key findings/Best practices for Transportation Infrastructure

- Have Organizational Strategic Plan for 3D Technologies Implementation
- Manage Change for Disruption to Current/Future Workflows/Dataflows
- Use Best Available Tools & Technologies to Achieve Business Goals
Key findings/Best practices for Transportation Infrastructure

- Management Buy-in with Support for Innovation & Funding of 3T’s (ITEC, IT2, DM, BOS, S&M, 3D, Innovation Committees)
- Reduce Org “Silos of Excellence” Bottlenecks/Poor Workflows/Dataflows
- Encourage Collaboration Between Agencies/Bureaus/Regions/Bus Units
Benefits/Advantages:
- Automate drafting/standards
- Draw efficiently/accurately
- Layout scale model-paper space
- Layout dimensions/text/notes
- Visualize/view drawing
- Layers/attributes/properties
- Vector & raster/custom libraries
- Modify/review to reduce updates
- Link CAE/CAD tools to CADD
- E-construction stakeout
- Organize/access project data

Benefits/Advantages:
- Modify, reuse, & revise in 3D to reduce updates
- 3D geospatial & rapid prototyping shop drawings
- 3D visualizations using walk/drive-through simulations/animations
- GPS stakeout/3D QA-QC
- Subgrade grading/string-less paving using AMG up to 30% savings

Benefits/Advantages:
- Multi-disciplinary collaboration
- Identify/reduce issues earlier by clash detection/resolution
- Reduce redesign, rework, DINs, & CCOs cost savings/avoidance opportunities up to 25%
- Staged-temporary construction
- Constructability analysis
- Optimize/visualize design-construction with VDC-CIM
- Link 3D to 4D & 5D/BOM

Benefits/Advantages:
- Multi-disciplinary collaboration
- Clash detection/resolution to eliminate issues to reduce redesign, DINs & CCOs
- Database lifecycle mgmt for O & M with data warehousing
- PLM link to PDM/CRM/BPM/ERP
- Process/workflows management
- Enterprise LAN + WAN & cloud
- E-design/e-construction use of 3D models/tools with mobile devices

Road & Bridge Design Best Practice Workflows: WisDOT SE Freeways

Where we are

Where we are going

ISOLATED

COLLABORATIVE

INTEGRATED
CIM 3D Modeling: Zoo Interchange
Construction: 2012-2018

- 9 miles of freeway + RRs
- 6 service interchanges
 - North Avenue
 - Watertown Plank Road
 - Bluemound Road
 - 84th Street
 - Greenfield Avenue
 - STH 100
- Major Arterial Roadways
 - STH 100/Mayfair Road
 - Watertown Plank Road
 - Swan Boulevard
 - Glenview Avenue
 - Greenfield Avenue
CIM 3D Modeling: Zoo Interchange
Construction: 2012-2018

- $1.7 b reconstruction of Zoo IC-Corridor
- Handles almost 350,000 avg. vehicles per day in traffic
- Over 15 miles of construction including arterials
- Construction involves 68 bridges including 6 RR structures, 1 system/7 service interchanges, 108 retaining walls, 15 noise walls, 2 box culverts, 115 sign structures & numerous utilities
- Temp. roads/structures to accommodate 2 lanes of traffic during construction
- 3D CIM for all disciplines is deployed throughout Zoo IC Design-Construction
CIM 3D Modeling: Marquette Interchange
Construction: 2004-2008

- $810m reconstruction of Marquette IC
- Handles almost 300,000 avg. vehicles per day
- Marquette IC is a 5-level system interchange
- Marquette IC is over 52 lane miles of construction
- Construction involved, 56 bridges, 30 ramps, 5 miles of retaining walls, and numerous utilities
- Links I-94 (W & S), I-43 (N), & I-794 (E)
- 10,254 page PS&E
- $497.8m Let with Final at $531.9 & CCOs=$34.1m (6.85%)
$294.4m reconstruction of Mitchell IC – part of the 39-mile $1.9b I-94 N-S construction

Handles over 195,000 avg. vehicles per day

Mitchell IC is over 10 miles of construction

Construction involves 3 tunnels, 13 bridges, 1 system/4 service interchanges (including Airport Spur), 29 retaining walls, 7 noise walls, 4 box culverts, 54 sign structures & numerous utilities

Temp. roads/structures to accommodate 2 lanes of traffic during construction

$647.0m Let (to date) with Current Final/Projected $687.0m & CCOs=$40.0m (6.18%)

CBA/ROI involving Contract Change Order Issues:

I-94 Mitchell IC Construction Project-$294.4 m
Mitchell IC, CD Road, 27th St, Airport Spur, College/Grange Aves
Field Issues - $22.2 m or 7.5% (651 of 669 DINs/CCOs) (avg - $33,180)
• GN-General: 30.5% (148-$6.8 m) ($45,674 per issue)
• RD-Roadway/Drainage: 25.5% (66-$5.7 m) ($85,631 per issue)
• WU-Wet Utilities/Drainage: 11.1% (90-$2.4 m) ($27,120 per issue)
• BR-Bridges: 8.0% (114-$1.8 m) ($15,557 per issue)
• NW-Noise Wall: 8.0% (14-$1.8 m) ($125,909 per issue)
• RW-Retaining Wall: 7.7% (78-$1.7 m) ($21,818 per issue)
• EW-Earthwork: 4.5% (17-$1.0 m) ($59,220 per issue)
• EL-Electrical/ITS/FTMS: 2.6% (93-$0.6 m) ($15,557 per issue)
• TR-Traffic: 2.1% (26-$0.5 m) ($18,174 per issue)
• SS-Sign Structures: 0.1% (23-$0.02 m) ($738 per issue)
CBA/ROI involving Contract Change Order Issues (to date):

Zoo IC Construction Project- $446.5 m of 1.7 b total (% - Complete in 2018 as of 03/31/15)
STH 100, Glenview Ave, WTP Rd, Swan Blvd, STH 100/UP RR Bridges, Greenfield Ave, 76th St Bridge, 84th St, Temp Salt Shed, Traffic Mitigation, Advanced Signing, & Int Corridors, Core 1
Field Issues - $12.6 m or 2.8% (1141 DINs/CCOs – avg $7,400) with $4.2m Balancing/Equalizing Mods
Plan Inadequacy Issues - $3.10 m (146 DINs/CCOs – avg $21,200)
• RD-Roadway/Drainage: 34.0% (196-$4.40 m) ($22,300 per issue)
• GN-General: 24.0% (224-$3.10 m) ($13,600 per issue)
• EW-Earthwork: 10.8% (57-$1.40 m) ($24,500 per issue)
• BR-Bridges: 10.8% (89-$1.40 m) ($15,700 per issue)
• WU-Wet Utilities/Drainage: 8.5% (182-$1.10 m) ($5,900 per issue)
• EL-Electrical/ITS/FTMS: 4.8% (131-$0.624 m) ($4,800 per issue)
• TR-Traffic: 4.2% (93-$0.543 m) ($5,800 per issue)
• RW-Retaining Wall: 1.2% (28-$0.152 m) ($5,400 per issue)
• NW-Noise Wall: 0.8% (5-$0.105 m) ($21,000 per issue)
• SS-Sign Structures: 0.6% (16-$0.077 m) ($4,800 per issue)
• SA-Safety: 0.6% (6-$0.073 m) ($12,200 per issue)
• LD-Landscaping: 0.2% (7-$0.026 m) ($3,800 per issue)
• O-Other/Demo: 0.1% (4-$0.017m) ($4,300 per issue)
• Overrun-Underuns/Balancing-Equalizing Mods: 33.3% (108-$4.20 m) ($39,300 per issue)
3D Technologies Implementation Plan-2014 Roadmap

- 3D Models - AMG/AMC Earthworks & Stringless Asphalt/Concrete Paving
- Construction Review
- Design-Construction-Contractor Collaboration
- Field Image Capture/Visualization
- Utility Inspection
- SPAR/GPR
- Field Clash Detection
- Construction LiDAR-Integrated Surveys
- Bluebeam vs Adobe Pro As-builts
- O & M Lifecycle
- Asset Management
- Cloud DPD/DDE
- Mobile Devices-Tablet PCs
- E-Construction
- Traffic & Safety

Wisconsin Department of Transportation
3D Technologies Implementation Plan
WisDOT Project ID: 0667-45-15
CMSC: WO 4.1
Final Report
March, 2013
Submitted to the Wisconsin Department of Transportation

Alan Vonderohe

Construction and Materials Support Center
University of Wisconsin – Madison
Department of Civil and Environmental Engineering
C3D Technologies/3D Modeling Workflow involving Zoo IC:

Zoo IC Construction Project- $1.7 b total (2007 to Completion in 2018)

• LiDAR and Integrated Survey - Pre-Design Data Collection:
• CIM Project Execution Plan (PXP):
• 3D Modeling – Roads:
• 3D Modeling - Structures:
• 3D Modeling – Utilities:
• 3D Modeling - Traffic:
• 3D Modeling - PI:
• 3D Modeling - Other:
• 3D Modeling QA/QC:
• 3D Modeling e-Construction/3D Rovers (CEC):
• LiDAR and Integrated Survey – Post-Design Data Collection:
• As-built 3D Modeling:
• 3D Modeling Tools
• O-Other:
Automated Infrastructure Planning: SE Freeways Project Prioritization & Sequencing

CIM Applications:
- Decision Matrix for SE Freeways Planning, Prioritizing, & Sequencing Projects
- Web-based SE Freeways Intranet/Extranet GIS Data Warehouse

Tool(s) Used:
- ESRI ArcGIS (7-County 2D File GeoDB GIS Data Warehouse)
- Autodesk C3D (7-County Project Data 3D to 2D)
- Decision Lens (MS Excel Import-Export to-from GIS)

Benefits:
- Strategic Capital Finance Planning, Resource Allocating, & Asset Management Planning
- Customizable Analytical Hierarchical Decision Matrix Weighting of Criteria Fields

Challenges:
- Data Warehousing of Large 7 County Datasets
- Web-based Access of Collaborative SE Freeways GIS DB - Intranet and/or Extranet
Automated Infrastructure Planning: SE Freeways Project Prioritization & Sequencing

SE Freeways Study Segments

55+ miles designed and/or constructed with 218 miles of 273 total miles to be prioritized and sequenced involving freeways in southeast Wisconsin
CIM 3D Modeling: Zoo Interchange Design-grade Survey

3D Survey Integrated Mapping using LiDAR-Static/Mobile/Aerial Scanning with Supplemental RTK GPS/Digital Leveling/TS/UAV Existing Conditions
CIM 3D Modeling: Zoo Interchange Design-grade Survey
CIM 3D Modeling: Zoo Interchange
Design-grade/Post-construction Surveys

Georeferenced Hi-res Digital Images
3D XYZ Return LAS Point Clouds
2D -3D Feature Lines 3D DTM-TINs X-Sections
3D CIM-BIM DSMs
CIM 3D Modeling: Zoo Interchange Design

3D Roads/Drainage/Surfaces
CIM 3D Modeling: Zoo Interchange Design

3D Structures: Bridges, Ret Walls, Noise Walls, Tunnels, Sign Bridges, Other
CIM 3D Modeling: Zoo Interchange Design

3D Utilities-Gas, Steam, Electrical, Comm, Fiber Optic, Tel/Data, CATV/Data, Other
CIM 3D Modeling: Zoo Interchange
Design

3D ITS/FTMS, Lighting, Signs, Signals, Landscaping, Water, San Sewer, Other
CIM 3D Modeling: Zoo Interchange Design

3D Staged Model with Temporary Surfaces, Roads, Drainage, Structures, Other
CIM – Multi-disciplinary Integrated 3D Design

CIM Applications:
- Multi-disciplinary Integrated 3D Design Workflows for Roadway, Structures, Geotech, Utilities, Traffic, S&S, Other
- Clash Detection between Disciplines in Design Reviews

Tool(s) Used:
- Bentley Microstation + In-roads (Design) SS2 / Autodesk C3D 2014
- Bentley Navigator (Clash Detection) / Autodesk Navisworks 2014

Benefits:
- Improved Design & Design-Construction Reviews
- Earlier Detailed Clash Detection-Resolution
- Improved PS&E Production Quality & 3D Model Delivery

Challenges:
- All Design Disciplines Designing in 3D
- Better 3D Modeling SW Tools Needed for Structures & Utilities
CIM 3D Modeling: Zoo Interchange Design

Traffic Applications on the Zoo IC Project

CIM Applications:
- Multi-disciplinary Integrated 3D Design Workflows for Roadway, Structures, Geotech, Utilities, Traffic, S&S, Other

Tool(s) Used:
- VISSIM vs Parametrics for Traffic Modeling
- 3D CIM Visualization Models for Maintenance of Traffic (MOT)
- BIM 360 for Issues and Risks
- Adaptive Signals and Other Innovations

Benefits:
- Improved Design & Design-Construction Reviews
- Improved PS&E Production Quality & 3D Model Delivery
- Earlier Issues Detection-Resolution in Design & Construction

Challenges:
- All Design Disciplines Designing in 3D
- Improved Integration for 3D Modeling SW Tools Needed for Traffic
Brief History of Integrated Corridors in SE Wisconsin

- Integrated corridor efforts began mid 1990’s
- Goal of integrating operations along arterials where multiple jurisdictions owned signals
- Significant efforts to establish a multi-agency corridor
- Collaborative operations by multiple agencies – better in theory than real life
- For the I-94 North-South project, a traffic responsive signal system was implemented
- For the I-94 East-West project, signal timings were provided by DOT to the municipalities
New Approach for Zoo Interchange Reconstruction

• Past experience suggested the need for a new approach to integrated corridors
• Zoo Interchange serves as the hub of the freeway network in the Milwaukee metro area
• Reconstruction would impact over 350,000 motorists per day
• Expanded capacity on several local arterials to address existing capacity constraints
Zoo Interchange

- Gateway to Milwaukee, largest urban center in state of Wisconsin
- Access to the regional medical center, tourism, jobs and education
- Neighborhoods and thriving communities
Zoo Interchange Construction

Significant Challenges

• Core of the interchange – long term closures
• Mainline - keeping traffic moving and Milwaukee open for business
• Railroad bridges – avoiding detours of rail traffic, impacts to freeway operations during construction
• Keep local street system operating
Transportation Management Plan (TMP)

- Staging Decisions
 - Consider 15-minute delay guideline & project schedule constraints to determine:
 - Lane closure time restrictions
 - Temporary bridges or widening
 - Temporary travel lanes or use of shoulder
 - Ramp/road closures
 - Then consider strategies to manage delay
Purpose of ICM

- Direct - address geometric, capacity and safety issues during Zoo Interchange reconstruction
- Indirect – reduce driver frustration, improve perception of DOT and municipal partnerships
- Integrate better traffic management functions within the project area for reconstruction and beyond
Integrated Corridor Management

Key Components

Arterials

- Adaptive traffic signals
- Dynamic message signs
- CCTVs
- Travel time system
Integrated Corridor Management

Adaptive Signal System

SCHEDULE

<table>
<thead>
<tr>
<th>PSE</th>
<th>Let</th>
<th>Begin Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st PS&E</td>
<td>Mar 1, 2013</td>
<td>July 23, 2013</td>
</tr>
<tr>
<td>2nd PS&E</td>
<td>Feb 1, 2014</td>
<td>June 23, 2014</td>
</tr>
</tbody>
</table>

InSync learning segment begins operations in early 2013

New signals installed in fall 2013

LEGEND

- Temporary Signal
- Extensive Signal Work Necessary
- Signal Ownership Transferred to WisDOT
- City of Milwaukee May Operate
- City of Milwaukee
- City of West Allis
- City of Wauwatosa
- City of Brookfield
- City of New Berlin
- Village of West Milwaukee
- Village of Elm Grove
- Waukesha County
- WisDOT
- 1st Tier InSync Signals
- 2nd Tier InSync Signals
- 3rd Tier InSync Signals

Note: Installations in work zones are tentative and will be finalized with the staging schedule.

Zoo Interchange Integrated Corridor Management System
PS&E 1 and 2 Adaptive Signal Installations (2013 and 2014 Construction)

DRAFT
Adaptive Signal System
Learning Segment

- Rhythm Engineering - InSync
- 70+ signalized intersections
- All WisDOT owned signals
- Cost of ~$200k for pilot 6 signals
- Includes an evaluation of operations
- Lessons learned for wider use
Evaluation Scope

Evaluation Measures of Effectiveness

• Travel times
• Intersection stop delay
• Intersection volumes
• Fuel consumption/emissions
Learning Segment

Evaluation Results

Floating Car Travel Time Runs and Bluetooth Travel Times

- Before InSync
- After InSync
- Free Flow @ 40 mph

Travel Time (min)

AM NB | AM SB | MID NB | MID SB | PM NB | PM SB | AM NB | AM SB | MID NB | MID SB | PM NB | PM SB | Sat. NB | Sat. SB

Travel Time Runs

Bluetooth Travel Times
History of Orange Pavement Markings

• Never used before in the United States
• Used before in other countries (Canada, Germany, Holland, Switzerland and New Zealand) in work zones
• Provide color correlation with other work zone devices
Why the Zoo Interchange?

- Lots of lane shifts in project
- Very high Traffic Volumes
- Issues with salt residue on pavement making the white lines blend in during the winter months
- Removal of old markings left scars on the pavement making it hard to distinguish the correct lane lines
- Motorist Confusion on where the travel lane really is
REQUEST FOR EXPERIMENTATION (FHWA)

• FHWA Approval for Experimentation Critically Important!!
 • Experimentation Request submitted on October 20, 2014
 • Approval from FHWA received on November 5, 2014
 • Current experimentation is through June 2016 (for the Core 1 Project)

• Concerns from FHWA:
 • Yellowing of orange marking over time
 • Utilization of Control Sections (one direction of the roadway is orange and the other is white)
 • Semi-Annual reports required
Evaluation Plan for WisDOT

• CCTV Cameras to detect driver reaction/traffic operations
• Dash-cam video footage used
• Continue to evaluate traffic operations, including operations during snow events (plowing and salting)
• Monthly retroreflectivity and color readings taken
• Survey of general public (located on WisDOT website)
• Utilize Fixed Message Warning Signs
Installation Challenges

- Trial and Error
- First orange was put down in early December 2014
- Used on Edgelines and Lanelines
- Utilized Orange Epoxy
- Out of spec (too cold!)
 - Equipment issues
 - Long cure time
 - Not very reflective
 - Poor adhesion
 - Color closely resembled the yellow epoxy
Survey Results (on Original Orange Markings)

• Did the Orange markings:
 • Increase your awareness of being in a work zone?
 • 53.5% Yes
 • 46.5% No
 • Seem more visible than the white pavement markings?
 • 59.7% Yes
 • 40.3% No

• Opinion of the Orange markings

- 23% Needs a lot of improvement
- 31% Needs some improvement
- 18% Good
- 15% Very Good
- 13% Excelent
Survey Results

What times have you traveled the route? (check all that apply)

- Early Morning (12am – 6am)
- Morning (6am – 9am)
- Mid-day (9am – 3pm)
- Afternoon (3pm – 6pm)
- Evening (6pm – 12am)

What weather conditions have you experienced when you traveled the route? (check all that apply)

- Sunrise/Sunset
- Overhead sunshine
- Overcast/Cloudy
- Snowing
- Raining
- Clear night
Lessons Learned So far....

• Issues with color at night with high pressure sodium lighting

• Need to utilize a more fluorescent type of orange to “pop out”
Installation Challenges

- The more fluorescent the orange, the more transparent it becomes.
Results

Measurements with the LTL2000Y from Delta

- White
- Yellow
- Fluorescent Orange (initial)
- Orange (initial)
- Orange (3 months, no traffic)
- Orange (3 months, skip)
- Orange (3 months, edgeline)
- Yellow (initial)
- Yellow (3 months, no traffic)
- White (initial)
- White (3 months, no traffic)
Results

- Orange Pavement Marking

Retro Readings over Time

- Fluorescent Orange (initial)
- Orange (no traffic)
- Orange (skip)
- Orange (edgeline)
- Yellow
- White
Survey Results 2

Opinion on the Fl. Orange used to help you drive safely through the work zone

- Needs lots of improvement: 2.82%
- Needs some improvement: 3.87%
- Good: 17.08%
- Very Good: 34.86%
- Excellent: 24.30%
- I didn’t notice: 17.08%

Did the Fl. Orange increase your awareness of being in a construction zone?

- Yes: 81.49%
- No: 18.51%
Survey Results 2

Which color marking would you prefer to be used in a construction work zone?

- Fl. Orange: 80.50%
- Orange: 14.60%
- White: 4.90%

Do you feel the Fl. Orange is more visible than the white?

- Yes: 90%
- No: 10%
WHAT’S NEXT??

• More fluorescent version (Epoxy) applied in mid March 2015

• Use of orange Waterborne Paint and Tape on Zoo Interchange Project

• $16.50 per gallon for waterborne vs. $65.00 per gallon for epoxy

• Continue evaluation until June 2016

• Providing valuable input back to FHWA

• Additional evaluations performed by the Smart Work Zone Pooled Fund through UW TOPS Lab
CIM 3D Modeling: Zoo Interchange Design

CIM - Visualization & Clash Detection

CIM Applications:
- Digital Project Delivery 3D Model-based PS&E Production + 3D Models (3DAMG Model @Prebid & 3D Ancillary Model @Precon)
- Clash Detection Preformed after 60% & Draft PS&E Reviews

Tool(s) Used:
- Bentley Microstation + In-roads (Design) SS2 / Autodesk C3D 2014
- Bentley Navigator (Clash Detection) / Autodesk Navisworks 2014

Benefits:
- Earlier Detailed Clash Detection-Resolution
- Improved PS&E Production & 3D Model Delivery Pre-bid/Pre-con

Challenges:
- “Rule-based” Clash Detection
- Pre-bid - AMG/Precon - Ancillary 3D Model Delivery Timeframes
CIM 3D Modeling: Zoo Interchange Design

4D/Constructability Analysis

Applications:
- Final design and staging plan development
- Public Involvement

Tool(s) Used:
- Autodesk Navisworks
- Bentley Navigator

Benefits:
- Evaluate staging options
- Evaluate utility relocations

Challenges:
- Requires 3d elements from design
- Requires detailed schedule and durations
- Accuracy of existing surface or utility data
- Design tool or visual aid??
CIM 3D Modeling: Zoo Interchange Design

3D Photorealistic/Augmented Reality/Rendered Model
CIM & Public Involvement Applications

CIM Applications:
- Exhibits & Maps from 3D Engineered Models & GIS for PI
- Renderings & Simulations from 3D Engineered Models for PI

Tool(s) Used:
- Bentley Microstation SS2 / Autodesk C3D 2014 / 3DS Max / RDV Systems / Forum8
- Autodesk 3DS Max

Benefits:
- Improved Renderings & Simulations Directly from 3D Models
- Improved Visualizations for Stakeholders

Challenges:
- Renderings & Simulations 3D Workflows Timeframes
- Better 3D Rapid Modeling Software Tools Needed
CIM 3D Modeling: Zoo Interchange Design

Post-Construction Initiatives:
As-built Record CEC Updating of 3D Model Pilot Project
CIM 3D Modeling: Zoo Interchange Construction

3D Engineered Models in Construction-SE Freeways/Region

CIM to Field Issues Tracking
CIM 3D Modeling: Zoo Interchange Construction

3D Engineered Models in Construction-SE Freeways/Region
CIM 3D Modeling: Zoo Interchange Construction

CIM – BIM Field 360

CIM Applications:
- Collaboration Using Autodesk BIM Field 360, Glue, & Buzzsaw
- Construction Issues Management + Design-Construction Reviews

Tool(s) Used:
- Autodesk BIM Field 360, Glue, & Buzzsaw (Pilot)
- Office & Field Mobile Devices (Pilot)

Benefits:
- Improved Issues & Risks Tracking & Notification
- Improved Design-Construction (PSE) Reviews
- Improved Constructability (Schedule/Costs) Reviews
- Improved Construction Collaboration & Coordination

Challenges:
- Mobile Devices Hardware (iOS Apple vs MS Win Office Tablets)
- Software Applications (Apple vs 32-bit MS Windows software)
Intelligent Vehicles + Sensor Technologies + Intelligent Roads with Automated 3D Design

- Driverless Vehicles
- Machine-Controlled UAV
- Traffic Operations
- UAV Accident Monitoring
- Lane, Distance, Time Compression