Attributes of Cherry Quality

- Size
- Firmness
- Absence of Physical Defects
- Uniform Color / Maturity
- Sheen / Luster
- Stem Condition
- Taste
 - Size, soluble solids, firmness
Factors Influencing Cherry Quality

- **Horticultural Management**
 - Rootstock, Training System, Pruning, Crop Load Management, Nutrition, Irrigation, Insect & Pathogen Control

- **Harvest Maturity**

- **Harvest Practices**

- **Post-Harvest Practices**

- **Environment**

- **Plant Growth Regulators**

Plant Growth Regulators

- Substances that, through physiological action, accelerate or retard growth, or alter the behavior of the plant or the produce of the plant.

- Usually by mimicking, enhancing, blocking, or antagonizing plant hormones

- **5 Classes of Plant Hormones**
 - Abscisic Acid
 - Auxins
 - Cytokinins
 - Ethylene
 - Gibberellins

- **About 45 Recognized Plant Growth Regulators**
 - 12 registered on sweet cherry
Plant Growth Regulators Registered on Sweet Cherry in the US

- Abscisic acid
- AVG
- 6-BA
- CPPU
- Kinetin
- Ethephon
- 1-mcp
- Prohexadione calcium
- Hydrogen Cyanamide
- Gibberellin A₃
- Gibberellins A₄ + A₇
- Homobrassinolide

Other Important Classes

- **CAN 17**
 - Harpin Protein
 - Biostimulants
 - Certain Fungicides
 - Certain Herbicides

Plant Growth Regulators Directly Impacting Sweet Cherry Quality Attributes

- CPPU
- Size
- Homobrassinolide
- Firmness
- **Gibberellin A₃**
 - Direct Positive Effect on All 7 Quality Attributes
 - Firmness
 - Size
 - Reduced Physical Defects
 - Uniform color / Maturity
 - Stem Condition
 - Taste

Structure of Gibberellin A₃

C₁₉H₂₂O₆
The 2 Most Powerful Plant Growth Regulators Available to Improve Quality

If you don’t use these judiciously, PGRs will not help you. These can turn soft 12-row cherries into firm 9 row cherries. Other PGRs can’t.

Gibberellin A3
- GA₃; Gibberellic Acid
- One of 136 different gibberellin isomers
- Stimulates cell expansion and cell division
- Increases cell wall plasticity (Ca++)
- Role in Physiological processes:
 - Cell enlargement
 - Ripening
 - Flowering
 - Fruit set
 - Breaking dormancy
 - Seed germination
 - Sex expression
 - Delayed senescence
GA₃ Benefits on Sweet Cherry

- Delays Maturity
 - Harvest management & market timing
- Enhances Fruit Quality
 - Increases Fruit Firmness
 - Increases Fruit Size
 - Increases (but delays) Soluble Solids
 - Increases Luster
 - Maintains color and turgidity of stems longer
 - Reduces physical defects
 - Pitting, Bruising, Mechanical
 - Improves storage life & quality

GA₃ Possible Adverse Effects

- Increased susceptibility to rain splits
 - Increased severity of rain splits
- Potential reduction of red blush on blonde cherries
 - From over-dosing
- Development of blind wood
 - From over-dosing
- Reduced flowering (return bloom)
 - From over-dosing
 - More effect on 1-yr old basal buds than spurs
 - Timing related
 - Bud differentiation
 - Could be a benefit
Maximizing Response to GA₃

Factors Influencing Response

- **Orchard Factors**
 - Cultivar
 - Tree Vigor
 - Crop Load
 - Environment

- **Application Factors**
 - Timing
 - Rate
 - Coverage
 - Application Conditions
 - Tank-mix partners
 - Split Applications

Orchard Factors Influencing Response

- **Cultivar**
 - Differences in sensitivity among varieties
 - Self-fertile cultivars
 - May need a higher dose (heavier crop loads)
 - May benefit from split applications (longer stage II & longer stage III)

- **Tree Vigor**
 - Weak trees with poor growth = reduced response
 - Stressed trees = reduced response
 - Young fruiting wood is more responsive
Orchard Factors Influencing Response

- **Environment**
 - Temperature & wind
 - Early season – Winter Freeze / Spring Frost / Extended Bloom Period
 - Growing Season
 - Cool growing season delays maturity, maintains turgor pressure; optimum response
 - Hot, windy growing season stresses tree; diminished response

- **Crop Load**
 - Leaf : fruit ratios
 - Firmness effect influenced by soluble solids
 - Soluble solids (and fruit size) correlated to crop load
 - Over-cropped trees = poor or no response
 - Lightly cropped trees = best response
 - Also greatest risk of over-dosing
 - Moderately cropped trees
 - Best balance between response and over-dosing risk

Application Factors Influencing Response

- **Timing**
 - Three Stages of Cherry Fruit Growth
 - Stage 1 – Cell Division
 - Rapid Growth
 - Stage 2 – Pit Hardening
 - Little or no growth (lag phase)
 - Later-maturing varieties have a longer stage 2
 - Stage 3 – Cell Enlargement
 - Rapid Growth
 - Later-maturing varieties have a longer stage 3
Application Factors Influencing Response

Timing

- Maximum effect on all attributes – firmness, size, maturity delay – at END of pit-hardening (stage 2)
- Pit-hardening is a process that occurs over time (~2 – 3 weeks), not a fixed point in time

![Diagram of cherry fruit growth stages](image)

Fig. 2. The growth pattern of a cherry fruit. From Tukey and Young, 1939. The Botanical Gazette 100(6):745.
PGRs to Improve Fruit Quality
2019 WSU/OSU Cherry Fruit School

Application Factors Influencing Response – Timing

- Broader window than once thought
- Adjust timing (not rate) for desired effect
 - Impact on maturity diminishes closer to harvest
 - Impact on size diminishes closer to harvest
 - Impact on firmness greatest at end of stage 2
 - Still some impact with later applications
 - Longer stage 2 duration for later-maturing varieties
 - May not always coincide with straw color
 - Longer stage 3 duration for later-maturing varieties
 - Does not correlate well with maturity

Benefit from Split Applications

Duration of Growth Stages

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Growing Degree Hours (GDH)</th>
<th>Duration of Stages</th>
<th>End of Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Cristalina</td>
<td></td>
<td>4,422 d</td>
<td>5,276 b</td>
</tr>
<tr>
<td>Bing</td>
<td></td>
<td>5,450 c</td>
<td>4,966 b</td>
</tr>
<tr>
<td>Sandra Rose</td>
<td></td>
<td>3,121 e</td>
<td>5,837 b</td>
</tr>
<tr>
<td>Sonata</td>
<td></td>
<td>5,877 c</td>
<td>8,696 a</td>
</tr>
<tr>
<td>Regina</td>
<td></td>
<td>5,591 c</td>
<td>5,815 b</td>
</tr>
<tr>
<td>Sweetheart</td>
<td></td>
<td>7,770 b</td>
<td>8,598 a</td>
</tr>
<tr>
<td>Symphony</td>
<td></td>
<td>10,824 a</td>
<td>9,119 a</td>
</tr>
</tbody>
</table>

Means separation within columns with the Waller-Duncan MSD, α = 0.05, k-ratio = 100

Application Factors Influencing Response – Timing

- **Split Applications**
 - Can help when maturity is staggered
 - Can cover multiple responsive stages to maximize and/or prolong effect
 - Work well on late-maturing varieties
 - Have improved response on Chelans

![Packinghouse Firmtech Readings](image)

<table>
<thead>
<tr>
<th>Fruit Firmness (g/mm)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>Bing 32 gm x 1</td>
</tr>
<tr>
<td>384</td>
<td>Bing 16 gm x 2</td>
</tr>
<tr>
<td>482</td>
<td>Lapins 48 gm x 1</td>
</tr>
<tr>
<td>678</td>
<td>Lapins 24 gm x 2</td>
</tr>
</tbody>
</table>

From: 2010BPHIL087GAD • 2010 • Malaga, WA

Application Factors Influencing Response - Rate

- **Dose (rate per acre) vs Concentration (ppm solution strength)**
 - Linear relationship between dose and response
 - Label rate range of 16 – 48 grams a.i. **per acre**
 - Match rate to variety and crop load (adjust timing for response)

As long as coverage is optimum, the DOSE (rate per acre) is more important to results than the concentration (ppm)
Application Factors Influencing Response - Rate

- Full dilute sprays (400 GPA – spray to run-off)
 - Ensured uniform coverage on older systems
 - Reduced potential for over-dosing
 - Prolonged drying time and absorption period

- Lower water volumes (80 – 200 GPA)
 - More use on newer higher-density plantings
 - Increased potential for over-dosing
 - Higher concentrations increase potential impact on return bloom

Rainiers treated with 12 grams GA$_3$ per acre in 100 GPA volume (30 ppm). Peaked on 8 ½ row; average firmness at receiving 486 on Firmtech.

Coverage

- Thorough coverage of fruit is critical
 - Response is localized
 - Applied GA$_3$ is not translocated throughout the tree
 - Limited movement from spur leaves to fruit

- Match application volume to canopy
- High volume air shear nozzles
- Travel speed no faster than 2 mph
Application Factors Influencing Response

Application Conditions
- Influence drying time and absorption
- Slow drying to maximize response
 - Temperature
 - Absorption occurs at 60°F - 90°F, but optimum at 70°F - 80°F
 - Cuticle change impacting absorption at 68°F
 - Humidity
 - Humidity > 40% slows drying time
 - Early morning applications when humidity is highest
 - Wind
 - Reduces drying time, absorption, & response
 - Rain
 - 2 hours after application will reduce absorption

Tank-mix partners
- Conflicting drying conditions?
- Effect on spray tank pH?

Buffers / Acidifiers / Surfactants
- Spray tank pH 6.0 – 7.0
- Surfactants
 - Will help with coverage
 - Can help with absorption
 - Some can cause fruit marking (tip rigs) or buckskin tips

NEVER USE A SILICONE SURFACTANT WITH GA₃ ON CHERRIES
Calcium

- Increases firmness
 - Binds with pectins to increase structural rigidity of cell walls
 - High concentrations can reduce plasticity of cell walls, reducing cell elongation
 - Potential adverse impact on fruit size

- Intracellular regulator with direct role in GA₃ transport
 - Can improve GA₃ response

Source

- CaCl₂ – rates > 0.15% burn leaves
- CaNO₃ – 6 weekly applications 0.3% - 0.6% from PH to 1 WBH or 1 app with GA₃
- Calcium Chelate, Calcium Citrate, Calcium Oxide

Take-Home Messages

- GA₃ is NOT a substitute for good farming & harvest practices
- Match the dose (rate per acre) to the variety and crop load
- Adjust timing for desired response
- Thorough coverage is critical
- Optimum absorption occurs at 70°F - 80°F
- Split applications can be helpful
 - Chelans
 - Staggered bloom period resulting in staggered maturity
 - Late-maturing varieties