Conclusion

We have seen that the principle of psycho-physical parallelism requires that we should be able to consider some mechanical devices as observers. The situation is then that such devices must either cause the probabilistic discontinuities of Process 2 (convert pure states into non-interfering mixtures), or must be transformed into the superpositions we have assumed. Since the former possibility must be rejected since it leads to the situation that some physical systems would obey different laws from the remainder, with no clear means to distinguishing between the two types, we are thus led to the theory which results from the complete abandonment of Process 2 - the pure wave mechanics herein described. Nevertheless, within the context of this theory, which is objectively causal, it develops that the probabilistic aspects described by Process 2 reappear at the subjective level as relative phenomena to observers.
The classical mechanics for macroscopic bodies can be deduced in the sense of Correlated Laws. 

Equation of such bodies can at one time be represented as superposition of states in which bodies have nearly (within uncertainty limits) definite positions and momenta, and which continue for a time to be nearly definite, obeying classical mechanics approximately.

Thus class mechanics is a law expressing laws regarding correlations within such systems between different times.
of the universe

One thus begins with a theory, which postulates only the existence of a Universal wave function, which obeys a linear wave equation. One then investigates the internal correlations in this wave function with the aim of deducing laws of physics, which are simply statements of the form, which and several properties of a subsystem of the universe (subset of the total collection of coordinates for the wave function) is correlated with the property of another subsystem, with the manner of the correlation being specified. (For example, the classical mechanics of a system of massive particles becomes a law which states that there is a certain correlation between the positions and momenta [approximately] of the particles at one time and the positions and momenta at another time. [e.g., at any instant a state for the system can be equally be represented as a superposition, each element of which describes the particles as independent particles. With wave packets, and each element of which, over time, a state at a later time for which the packets have moved in a nearly classical manner.) All statements about each subsystem then become relative statements, i.e., statements about one subsystem relative to another. All laws are correlation laws.
It is a complete causal theory of conceptual simplicity. It maintains fully the principle of Pauli Physical Paradox.

All of the correlation Paradox (Section 2.1) failed easy explanation. The paradox frequently deals with any number of observers.

Consistency. Disappearance of Paradox of Entanglement since all elements of a superposition equally valid (no need to bear that any prior existence will be upset by a future observer, since he would merely correlate our whole superposition in no way affect past history.
Since this viewpoint will be applicable to all forms of Quantum mechanics where the superposition principle holds, an attempt should be made to consider the effects of anomalous probability waves scattered about space and time. We can assert that field equations valid everywhere and everywhere, then deduce any statistical assertions that are possible by the present method.

We should also like to remark upon the fundamental nature of the correlation, information, as defined here, as a basic quantity characteristic of coupled systems, also its relation to entropy, etc., and the possibility of deducing useful relations concerning it, (regard to precision, possible predictions, etc.)

(With such remarkable properties, there cannot escape the feeling that it has a fundamental significance.)
The theory also forms a framework for the discussion of, in addition to ordinary phenomena, various processes including relationships among several observers themselves in a logical, unambiguous fashion. While this theory exhibits the subjective as a practical matter position (expressed in alternative 1 of the introduction), since that is in fact a deduction of this theory — the subjective appearance to observers, it forms a broader frame in which to re-explore and to the consistency of that world. It transcends that position, however, in its ability to deal logically with questions of imperfect observations (approximate measurements).

It may prove a fruitful framework for the interpretation of new quantum formalisms as they appear, particularly in the sense of the way to construct formal (non-probabilistic) theories, and supply the possible statistical interpretations later. By focusing attention upon questions of correlations, one may be able to deduce useful relations for such interpretations (correlation laws). Quantum fields do not have pointwise independent field values, the value at one point being correlated to those at neighboring points in a manner as to be expected approximating the behavior of classical fields. If correlations are important in systems with a finite number of degrees of freedom, they must be in systems with sufficiently many (about no approximate limit).
Finally, aside from any possible advantages of the theory, it remains a matter of intellectual interest that the statistical assertions of the usual theory are not independent hypotheses, but are deducible (in the present sense) from the pure wave mechanics.