CERTIFIED

USB 2.0
Debug Port

John Keys
Intel Corporation P

HI-SPEED
= USB

June 12, 2002

D USB 2.0 Debug Port

D USB Debug Device

D Software Components
D Development Status

June 12, 2002 3

What Is the Debug Port?

D Optional EHCI feature , details in Appendix C of
the EHCI Spec, starting with Revision 0.96

D A simple means of performing single
transactions: “pseudo-PlIO” USB

D Only works with High-Speed USB devices
D Implemented for a specific port, optionally more

D Operational if port is not suspended and the HC
is fully powered

June 12, 2002

th Is It Needed?

D PC2001 System Design Guide requires debug
capabilities in all systems

D Low-cost solution for legacy free debugging
D Low operation complexity = Reliability & Stability
D 5x higher data rate than Super I/O & LPC solutions

June 12, 2002 5

== Debug Port Architecture

D Debug port provides a memory mapped interface
that is independent of EHCI controller

— Memory space is typically mapped in same
area as EHCI

— |dentified and located through
‘PCI capability’ mechanism

EHCI Driver

EHCI controller

Port Port Port Port | Port MH

June 12, 2002 6

Debug Port
Driver

Debug Port
Controller

Memory Interface

Control/Status
Receive/Token/Send PIDs

e

Data Buffer (bytes 3:0)
Data Buffer (bytes 7:4)

Device Address

D All registers are dwords

D Registers are located in same memory area as standard
EHCI registers

D Debug port capability and register location is determined
through PCI Extended Capabilities features

June 12, 2002 7

= Operational Model

D For OUT transaction:

— SWiinitializes token PID to OUT, data PID to DATAX, and puts
appropriate data in the data buffer

— SW tells HW to begin, HW sends token packet and data packet,
then waits for handshake packet.

— HW updates registers with status
— SW checks status - If no error, SW checks received PID

D For IN transaction

— SWi initializes token PID to IN, and starts the HW

— HW sends token packet, waits for DATAx packet, and responds
with handshake packet if everything OK

— HW updates registers with status and received length
— SW checks status - if no error, SW checks PID, gets data

June 12, 2002 8

== Agenda
D USB 2.0 Debug Port

D USB Debug Device

D Software Components

D Development Status

June 12, 2002

USB Debuqg Device

USB-Serial Out _
]

Debug Device In I

[0
= e ==

— RS-232

Debugger Host Debug Target

USB to Serial Debug Device Example

June 12, 2002 10

USB to Serial Debug Device Example

June 12, 2002 11

USB Debuqg Device

In N

T o
1= ===l Il = =1 = ="

Debug Device ——

Debugger Host Debug Target

USB to USB Debug Device Example

June 12, 2002 12

USB to USB Debug Device Example

June 12, 2002 13

Debug Device Types

D Fixed Function

— Dedicated - only a debug device Debug Mode

— Has hard-coded address of 127

D Single Function | Debug Mode
— Works as a debug device OR as _/)

another type of device File Transfer

D Multi-function

— Combines a fixed-function debug ?v‘rb:g
device with another device, ode
a hub for example Hub

June 12, 2002 14

Debug Device
= Requirements

D Must be USB 2.0 High-Speed signaling compliant
D Debug Port Supports Maximum Packet Size of 8, so

— One bulk-type IN endpoint supporting a maximum
packet size of 8 bytes

— One bulk-type OUT endpoint supporting a maximum
packet size of 8 bytes

— The Control Endpoint must correctly handle short
transfer requests of 8 bytes

D Must support Debug Device extensions
D If device has a fixed address, that address must be 127

June 12, 2002 15

m@ Debug Device Extensions

Two Extensions for Debug Devices:
D DEBUG Descriptor Type

D DEBUG MODE Feature Selector

June 12, 2002 16

=z Debug Device Extensions
== USB
D DEBUG Descriptor Type

— Provides means of detecting Debug Device functionality
— Valid from default, addressed, and configured states

— Provides Target-platform with operational params in < 8 bytes
(Remember, Debug Port = 8 byte max transfers)

Offset Field Value Description
0 bLength Number Length of this Descriptor
in bytes: 4
1 bDescriptorType Constant DEBUG descriptor type
2 bDebugIlnEndpoint Number Endpoint number of
Debug Data IN endpoint
3 bDebugOutEndpoint Number Endpoint number of
Debug Data IN endpoint

June 12, 2002

={usg

D DEBUG MODE Feature Selector
— Tells device to begin “debug device” operational mode
— Used with SET_FEATURE request

— Valid only from Default and Addressed state
— Implied SET_CONFIGURATION request - allows Target to

Debug Device Extensions

configure device without parsing configuration / interface /
endpoint descriptors

bmRequestType

bRequest

wValue

windex

wlLength

Data

000000008

SET_FEATURE

DEBUG
MODE

0

None

June 12, 2002

18

= Agenda
D USB 2.0 Debug Port

D USB Debug Device

D Software Components

D Development Status

June 12, 2002

19

= Target SW Components

D Target Platform Components
— Debug Port DLL

— Debug Port-aware
EHCI driver

Debugger: 0/S
Application

0/S
Class Driver(s) EHCI Driver
USB Driver Stack

Ddgtfe) Port
EHCI controller ,
EHCI controller GONLIOler

Kernel Debug

Debug Port

DLL

Port Port Port Port Port

Host | Target I

June 12, 2002 20

Debug Port DLL

D Connects Kernel Debugging to the USB 2 Debug Port

D Loaded from BOOT.INI
— DEBUGPORT=USB - O/S Loader loads kdusb.dll

D If device connected to Debug Port:
— Reset Port
— Send Get Descriptor:DEBUG descriptor type request to device

— If device returns descriptor
Set device address (typically 127)

Send Set Feature:DEBUG MODE request to device to set configuration

Sets OWNER and IN-USE bits in Control/Status register to inform EHCI
driver that debug port is in use

June 12, 2002

21

Debug Port-Aware

EHCI Driver

D Cooperates with Debug Port DLL

D Examines Debug Port Control/Status OWNER
and IN-USE bits at init time

D If OWNER / IN-USE set:

— Does not reset host controller

— Does not include Debug Port in Root Hub ports
(Debug Port not available for general use)

— Does not reset or suspend Debug Port
— Does not respond to Debug Port status

June 12, 2002

22

Debugger Host SW
[Components

D Debugger Host Platform Components

— Class Driver(s) that connect USB driver
stack to Debugger

Debugger: 0/S
Application
0/S Kernel Debug

Class Driver(s) EHCI Driver
USB Driver; Stack

(USBDI) _—
Maglief Poss
EHCI controller 2rl0) soniroller Gontroller

Port Port Port Port Port @

Host | Target I

June 12, 2002 23

Debug Port

Current WinDbg Solution

~{uss
WinDbg
Right now WinDbg doesn’t know USB, so -

we use two drivers to create a virtual -

serial port from the USB debug device: @

1) USBDEBUG.SYS creates a Device Object for -
the virtual serial port (COM D), Waits for PP~~~ J{TEEIT=ITeR
to announce arrival of a Debug Device lo Manager 4
interface (PnP)

2) UDBGDEV.SYS is a PnP driver for USB Debug
Devices. It registers a Debug Device interface
with PnP when Debug Device appears

3) WinDbg opens COM D, causing USBDEBUG USBDI

to open UDBGDEV

June 12, 2002 24

UDBGDEV

D USB 2.0 Debug Port

D USB Debug Device

D Software Components
D Development Status

June 12, 2002

25

e Development Status

D Debug Port Implemented in ICH4 Chipset, other vendors
nearing completion of Debug Port implementations

D Prototype USB-to-Serial & USB-to-USB Devices Done
— Netchip has working USB-to-USB reference design for OEMs

D Prototype Software Components Complete

D Intel is working with Microsoft on:
— Debug Port DLL and Debug Port-Aware EHCI Miniport
— Deployment Strategy

June 12, 2002 26

USB to USB Debug Device

June 12, 2002 27

z dUMma

Lo

D USB 2 Debug Port allows kernel debugging on
legacy free systems, a viable alternative

D Ingredients coming together nicely: Host
controllers, Debug devices, Target software,
and Remote software

Call To Action
fyou want USB debugging, let Microsoft know

how much you want it

June 12, 2002 28

Collateral
/IEEIE!
= USB
Available from
http.//developer.intel.com/technology/usb/spec.htm:

D Enhanced Host Controller Interface Specification
for Universal Serial Bus
Revision 0.96 and 1.00

D USB2 Debug Device - A Functional Device
Specification
Revision 0.9

June 12, 2002

29

