
The Diskless Fileserver

Erik Quanstrom
quanstro@coraid.com

ABSTRACT

The Plan 9 Fileserver is structured as a multilevel cache for direct-
attached WORM storage. I describe how the Fileserver is being adapted
for modern hardware using network-attached storage (AoE) over 10Gbps
Ethernet. This structure allows for good performance and high reliability.
In addition it separates storage maintenance from Fileserver maintenance
and provides automatic offsite backup without performance penalty.

1. Introduction

In order to meet our growing performance and reliability demands, I am in the process
of rolling out a diskless Fileserver. The system consists of a diskless Intel-based File­
server, a local AoE target and an offset AoE target. A backup Fileserver in �standby�

mode is available in case the main Fileserver should fail. The AoE targets are stock
SR1521 machines with added 10Gbps Ethernet cards. This configuration is pictured in
Figure 1.

Fileserver

SR1521

10Gbe

backup Fileserver

SR1521

Wireless 10Gbe

Figure 1

The configuration string[2] for this Fileserver is

filsys main ce565.0{e565.1e545.1}.

The configuration string for the backup Fileserver is

filsys main ce545.0e545.1.

The targets e565.x are connected to the Fileserver by a point-to-point 10Gbps Ether­
net link. Except during a dump or in the event of a failure of e565.1, all I/O is per­
formed over this link. The target e545.0 is in another building, connected by a shared
54Mbps wireless link.

The AoE targets are managed independently from the Fileserver. Maintenance tasks,



like replacing failed drives, reconfiguring or adding storage, do not require knowledge
of the Fileserver and may be performed without shutting down the Fileserver. Con­
versely, the Fileserver does not require knowledge of how to perform maintenance on
the AoE targets.

2. Fileserver Basics

The Fileserver serves files via the Plan 9 file protocol, 9P2000. Requests that cannot be
directly satisfied by the in-memory Block Cache are resolved by devices. The Block
Cache is indexed by device and device address. The cw device serves the WORM filesys­
tem. It is comprised of three on-disk devices: cache, read-only and cached WORM.
These devices are known as c, w, and cw. All Blocks have a w−address and a cache
state. Blocks not in the cache are state none. Freshly written blocks are state write.
Blocks on the w device that are rewritten are state dirty. A �dump,� a permanent
snapshot of the filesystem, is taken by converting modified blocks to state dump. This
process takes just a few seconds. Other activity on the Fileserver is halted during the
dump. Copying takes place in the background and does not impact the performance of
the Fileserver. Once state dump blocks are copied to the WORM, their state is changed
to read or none, if it is dropped from the cache. The copying phase of any number of
dumps may overlap.

The implemented Fileserver has a Block Cache of 402,197 8192-byte blocks (3137MB),
a cache device, e565.0, of 3,276,800 blocks (25GB) and a WORM device,
{e565.1e545.1}, of 1.5TB. The WORM device is the loose mirror of AoE targets
e565.1 and e545.1. Writes are preformed on the mirrored devices sequentially but
data is read from the first device only. Thus the wireless connection which limits dumps
to ~1MB/s is not part of the client�s I/O path.

The WORM filesystem is fully described in [1], [2] and [3].

3. �Standby� Mode

It is not possible use both Fileservers at the same time. Both will try to allocate
w−addresses without respect to the other. To solve this problem a configuration
item and command, both named dumpctl were added. The main Fileserver is config­
ured with dumpctl yes and the backup Fileserver is configured with dumpctl no.
To prevent writes, attaches may be disallowed. In the event that the Fileserver fails, the
command dumpctl yes is executed on the backup Fileserver�s console. And if dis­
abled, attaches are allowed.

While the backup Fileserver is running, it will not see the new data written by the dump
process on the main Fileserver. The backup Fileserver must be halted each day after the
dump on the Fileserver and the command recover main must be typed at the
config prompt. This will cause the cache to be flushed and the filesystem to be ini­
tialized from the new dump.

4. Changed Assumptions

In the fifteen odd years since the Fileserver was developed, a few of its assumptions
have ceased to hold. The most obvious is the worm device is no longer a WORM. Even if
we were to use WORM storage, disk space is inexpensive enough that it would be practi­
cal to keep an entire copy of the WORM on magnetic storage for performance reasons.
This means that the cache and the WORM devices have the same performance. There­
fore it no longer makes sense to copy blocks in state Cread to the cache device.



Blocks in state Cread have been read from the worm device but not modified[3]. A
new option, conf.fastworm, inhibits copying these blocks to the disk cache.

A less obvious difference is in the structure of the cache. The cache device is structured
as a hash table. The hash function is simply modulo the number of hash lines and the
lines are written sequentially to disk. If we let n be the number of rows and l be the
number of columns in our hash, he function is

row = w % rows
c = column + row*n,

the blocks will be linearized onto the disk in the following order

0,n,2n,...,(l − 1) n,1,1 + n,1 + 2n, . . .

Suppose that two blocks w and w + 1 are written to the Fileserver with an empty cache.
Suppose further that w + 1 % l ≠ 0. Then blocks w and w + 1 map to disk blocks c and
c + CEPERBK. With a block size of 8192 bytes, current Fileserver parameters and 512
byte disk sectors, this works out to 1072 sectors between �sequential� blocks.

With disk drives of the same era as the original Fileserver, disk transfer rates were lim­
ited by hardware buffer sizes and interface bandwidth[5]. Assuming a transfer rate of
1MB/s and a seek time of 15ms, it would take 8ms to transfer 8192 bytes from the disk
and less than 15ms to seek to another track or about 347KB/s. On modern SATA drives,
it would take 26µs to transfer 8192 bytes from the disk and up to 9ms to seek. this
would only yield 890KB/s. During testing about 2MB/s was observed. If this same ratio
of calculated versus actual seek time were to hold for older drives, the older drives
would operate at near rated bandwidth.

When the formula was changed to

n = w % rows
c = column*CEPERBK + n,

the blocks are linearized onto disk in the following order

0,1,...,l − 1,l,l + 1, . . . ,

changing from row- to column-major ordering, performance increased to ~25MB/s.
Note that not caching blocks in state Cread insures that w and w + 1 will be stored
sequentially on disk, as column will be the same for w and w + 1 unless
w + 1 % rows = 0. However, in this case the blocks will also be stored sequentially
because row r and row r + 1 are also sequential.

5. Assumptions Redux

If a cat can kill a rat in a minute, how long would it be killing 60,000 rats?
Ah, how long, indeed! My private opinion is that the rats would kill the cat.

� Lewis Carroll

The Fileserver�s read-ahead system consists of a queue of blocks to be read and a set of
processes which read them into the cache. Although the original paper on the Fileserver
only lists one rah process, the earliest Fileserver at the Labs� WORM started four. The
Fourth Edition Fileserver again started one rah process but attempted to sort the blocks
by w−address before processing. This approach probably makes sense on slow, parti­
tioned disks. However, it has the disadvantage of processing blocks serially. The more
parallelism one can achieve among or within the Fileserver�s devices, the greater the
performance penalty of the sequential approach.



To test this idea, a 1GB file was created on the Fileserver on AoE storage. The AoE
driver has a maximum of 24 outstanding frames per target. After rebooting the File­
server to flush the Block Cache, it took 25.5s to read the file. Subsequent reads took
and average of 13.72s. After changing the read-ahead algorithm to use 10 independent
rah processes, the test was rerun. It took 15.74s to read the file. Increasing the num­
ber of rah processes to 20 reduced the uncached read time to 13.75s, the same as the
cached read time. Two concurrent readers can each read the entire file in 15.17s, so the
throughput appears to be limited by 9P/IL latency.

6. Core Improvements

The port directory underwent some housecleaning. The 9p1 protocol was removed.
The console code was rewritten to use the 9p2 code. The time zone code was replaced
with the offset pairs from the CPU kernel to allow for arbitrary time zones. A CEC con­
sole was added to allow access without a serial console.

More significantly, Locks were changed from queueing locks to spin locks. Since a sig­
nificant use of spin locks is to lock queues to add work and wake consumers, unlock
reschedules if the current process no longer holds any locks and has woken processes
while it held locks. Also, the scheduler takes care not to preempt a process with locks
held. This improved the throughput of single-threaded reads by 25%. These ideas were
taken from the CPU kernel.

Networking was changed to allow interfaces with jumbo MTUs. This is not currently
used by the IL code as it has no MTU discovery mechanism.

7. PC Architecture Improvements

By far the largest change in the PC architecture was to memory handling. The primary
goal was to be able to handle most of the bottom 4GB of memory. Thus the definition
of KZERO needed to be changed. The PC port inherited its memory layout from the
MIPS port. On the MIPS processor, the high bit indicated kernel mode. Thus Fileserver
memory was mapped from 0x80000000 to the top of memory. Converting between a
physical and virtual address was done by inverting the high bit. While simple, this
scheme allows for a maximum of only 2GB. Lowering KZERO to 0x30000000 and
mapping PCI space to 0x20000000 allows for 3328MB memory.

Unfortunately, being able to recognize more memory puts us in greater danger of run­
ning into PCI space while sizing memory, so another method is needed. A BIOS
0xe820 scan was chosen. Unfortunately, the processor must be in Real mode to per­
form the scan and the processor is already in Protected mode when the Fileserver kernel
is started. So, Instead of switching back to real mode, 9load was modified to perform
the scan before turning on paging[8].

Surprisingly, the preceding changes were not enough to enable more memory. The File­
server faulted when building page tables. It turned out this is because the 4MB tempo­
rary pagetables built by 9load were not enough. The BIOS scan of the testing machine
yielded 3326MB of accessible memory. This would require 3.25MB of page tables.
Since the bottom megabyte of memory is unusable, we don�t have any room left for the
kernel. The solution was to use 4MB pages. This eliminates the need for page tables,
as the 1024-entry page directory has enough space to map 4GB of memory.

On 64-bit processors, it would be relatively easy to fill in more memory from above 4GB
by using the 40-bit extensions to 4MB pages.



8. The AoE Driver

If you were plowing a field what would you rather use, 2 strong oxen or
1024 chickens?

� Seymour Cray

This is the Fileserver�s raison d�être. The AoE driver is based on the Plan 9 driver. It is
capable of sending jumbo or standard AoE frames. It allows up to 24 outstanding
frames per target. It also allows a many-to-many relationship between local interfaces
and target interfaces.

When the AoE driver gets an I/O request, a Srb structure is allocated with mballoc.
Then the request is chopped up into Frame structures as available Each is sized to
MTU of the chosen link. A link is chosen round-robin fashion first among local inter­
faces which can see the target and then among the target�s MAC addresses. MTUs may
be freely mixed. The frames are sent and the number of outstanding frames is appro­
priately incremented. The driver then sleeps on the Srb. When awoken, the process is
repeated until all the bytes in the request have been received.

When an AoE frame is received that corresponds to I/O, the frame is copied into the
buffer of the Srb and the number of outstanding frames is decremented. If there are
no outstanding frame remaining, the Srb is woken.

Since the Myricom 10Gbe cards have an MTU of 9000 bytes, an entire 8192 byte block
and the AoE header fit into a single frame. Thus sequential read performance depends
on frame latency. Performance was measured with a process running the following code

static void
devcopy(Dcopy *d)
{

Iobuf *b;

for(d−>p = d−>start; d−>p < d−>lim; d−>p++){
b = getbuf(d−>from, d−>p, Bread);
if(b == 0)

continue;
putbuf(b);

}
}

The latency for an frame with 8192 data bytes is 79µs giving 12,500pps or 103MB/s
while two concurrent reads yield 201MB/s. Testing beyond this level of performance
has not been performed.

9. System Performance

I measured both latency and throughput of reading and writing bytes between two pro­
cesses for a number of different paths. 2007 measurements were made using an
SR1521 AoE target, an Intel Xeon-5000-based cpu server with a 1.6Ghz processor and a
Xeon-5000-based Fileserver with a 3.0Ghz processor. 1993 measurements are from
[6]. The latency is measured as the round trip time for a byte sent from one process to
another and back again. Throughput is measured using 16k writes from one process to
another.



_____________________________________________________________________________
Table 1 � Performance_____________________________________________________________________________

test 93 throughput 93 latency 07 throughput 07 latency
MB/s µs MB/s µs_____________________________________________________________________________

pipes 8.15 255 2500 19_____________________________________________________________________________
IL/ether 1.02 1420 78 72_____________________________________________________________________________
URP/Datakit 0.22 1750 N/A N/A_____________________________________________________________________________
Cyclone; AoE 3.2 375 e250 49_____________________________________________________________________________
























































Random I/O was not tested for two reasons. First, ~3GB of recient reads and writes are
stored in the Block Cache and when new or newly modified files are reread from the
cache, they are reread sequentially. It is expected that the working set of the Fileserver
fit in the Block Cache. Second, since a single IL connection is latency limited, reads of
highly fragmented files like /sys/log/auth from the WORM are not meaningfully
slower (59MB/s) than reads from the cache (62MB/s).

10. Discussion

Decoupling storage from the Fileserver with AoE allows for automatic offsite backup,
affords good availability, scalablity and performance. The Fileserver is not involved in
storage management. It is possible to grow the existing WORM to 9TB without restart­
ing the fileserver. By reconfiguring the Fileserver, essentially unlimited storage may be
added.

The size of the WORM and Block Cache have scaled by a factor of 1000 since [3] and sin­
gle IL connections have scaled by a factor of 200 since [7]. The Block Cache is currently
at a practical maximum for a kernel with 32-bit memory addresses. A kernel with 64-
bit memory addresses in the next logical step.

The disk cache has not been scaled to the same extent as the increased number of
cache buckets put more pressure on the Block Cache and would not provide much bene­
fit. With the conf.fastworm option, the cache only need to be large enough to hold
the free list and any blocks in state dirty or write. Eliminating the cache device
may make sense in the future. The cache device could be replaced with address of the
current Superblock. Addresses below the current Superblock would be read only. The
disadvantage to such a scheme is that the dump processes gives the (unused) opportu­
nity to optimize the ordering of w−addresses.

11. References

[1]K. Thompson, �The Plan 9 File Server�, Plan 9 Programmer�s Manual, Second Edition,
volume 2, AT&T Bell Laboratories, Murry Hill, NJ, 1995.

[2]K. Thompson, G. Collyer, �The 64-Bit Standalone Plan 9 File Server�, Plan 9
Programmer�s Manual, Fourth Edition, volume 2, AT&T Bell Laboratories, Murry Hill, NJ,
2002.

[3]S. Quinlan, �A Cached WORM File System�, Software � Practice and Experience, vol­
ume 21, number 12, pp. 1289�99.

[4]S. Hopkins, B. Coile, �ATA over Ethernet�, published online at
http://www.coraid.com/documents/AoEr10.txt

[5]A. Tanenbaum Operating Systems, design and implementation, Prentice Hall, Engle­
wood Cliffs, New Jersey, 1987, p. 272.



[6]Diskless Fileserver source code at /n/sources/contrib/quanstro/src/myfs.

[7]D. Presotto, P. Winterbottom, The Organization of Networks in Plan 9 Proc. of the Win­
ter 1993 USENIX Conf., pp. 271-280, San Diego, CA

[8]Modified 9load source code at /n/sources/contrib/quanstro/src/9loadaoe.


