A Portable History

Erik Quanstrom
quanstro@coraid.com

ABSTRACT

History from the dump filesystem has traditionally been locked into the
fileserver on which it was created. | describe the method used for trans-
ferring our history from the old fileserver, Plato, to the new fileserver,
Kibbiee, without making any modifications to Plato.

Introduction

Earlier this year the dump filesystem on our main fileserver, Plato, surpassed 75% usage.
Since Plato is running a 32-bit fileserver on four-year-old hardware, we decided to build
a new fileserver instead of adding new disks to an old machine. Usually starting with a
new on-disk layout means that history cannot be transferred to the new machine and
the old fileserver must be down while a snapshot of the current filesystem is taken.
Even if the same on-disk format is used, both fileservers must be offline during the
transfer and there is the risk of damaging the original filesystem due to operator error.
| outline the method used to copy history from the 32-bit Plato to the 64-bit Kibbiee
while Plato continued to serve files.

Method

Both fileservers were placed (silently) into allow mode. Kibbiee’s date was initially set to
Midnight on June 11, 2004, the first day of Plato’s dump. For each historical day of the
dump, updatedb(1) was used to generate a list of changes to the filesystem from the
previous day, a database and a log file. For the first day of the dump, the preceding day
was set to the first day of the dump and the database was empty. Thus all files from
that day were added. The C(1) command was used to set the date on the fileserver to
midnight Standard Time on the day of the dump. Changes to adm/users were applied
first so files created would have the correct owners, then other changes were processed,
both with cphist(1). Finally a dump was forced on Kibbiee. This process was repeated
for each day of the dump. 1024 dumps were processed. Each dump took approxi-
mately ten minutes to process.

Fileserver Changes

No changes were made to Plato. Kibbiee’s kernel required changes to PCl enumeration
and interrupt handling. The time functions were updated to support Daylight Savings
Time in any timezone using the data files from the Plan 9 C library. Support was added
for reading nvram from a Plan 9 9fat partition by reading the partition table 9/oad(8)
leaves in core. This facilitates booting a cpu kernel on the fileserver for maintenance
operations such as loading a new kernel. This can’t be done easily on another machine
because the fileserver boots from a flash disk.



In addition, new drivers were written or ported for the Myricom Lanai z8e 10 gigabit eth-
ernet adapter, the Intel i82563 PCle-based gigabit ethernet adapter and the Marvell
88SX[56]xx hotpluggable SATA controller.

Device Copy

Since the Marvell controller supports hotpluggable SATA drives, we are able to copy the
worm onto drives that are physically moved to an offsite backup fileserver. The same
process for copying history as outline here could be used. However this seems error
prone and using allow mode at predictable times presents a security problem. To allow
for online backups, the devcopy command was added. The following example will
copy blocks 0 through 183140625 from [m2m3] to [m7m81],

devcopy start [m2m3] [m7m8] O 183140625

The final two arguments are optional parameters. The command is executed in the
background by a single, dedicated process. Console control returns immediately. There
can only be one active device copy at a time. With no arguments, devcopy prints out
its progress. The arguments pause or resume apply to the last copy started.

It is expected that the operator will either arrange that no dump is taken while a device
is being copied, or will have an offline process to erase the inconsistant data at the end
of the dump filesystem.

QID relationships

In order for the history to work correctly on the new server, we need to insure that files
are appended or deleted and recreated exactly as they were on the original. Just
inspecting the mode bits is insufficient. For example an mbox has the append bit set.
However each time it’s edited the old file is deleted and a completely new file is written.

In order to transfer history correctly, we require that following properties hold. When-
ever to files on Plato have the same qid.vers, they must also have the same
gid.vers on Kibbiee, although the absolute value on either is not important. We also
require that whenever two files have the same gid.path on the Plato that they have
the same gid.path on Kibbiee.

The new program cphist(1) does just this. When files are listed as changed or created,
the qid.path and gqid.vers are carefully inspected to decide if the file should be
deleted and copied or if only the modified blocks need to be copied. The last-modified
user is also set. This is sufficient for all cases except when a file is renamed. In this
case, the old file is always deleted and a new file is created. This case resulted in
Kibbiee’s fake WORM using about 20% more blocks than Plato’s.

Issues

Due to a spam problem in 2006, there were two directories on Plato that had over 2 mil-
lion entries. Scanning these directories took approximately 45 minutes each. This
increased the time needed to transfer one day’s dump from 10 minutes to 100 minutes.
This problem was overcome by binding an empty directory over the two large directories
before running updatedb(1).

Two errors were encountered when a non-empty directory was deleted and replaced by
a file. This problem was encountered because updatedb(1) does not emit deletes first.
This problem was addressed in an ad—hoc fashion.



After Kibbiee became the active filesystem, it was discovered that a missing line in the
9p code in the fileserver kernel prevented the muid from being set. Thus history(1)
output lists incorrect users. Since adm/users changed during the process of loading

history, the mapping of users to the uid of channel loading the history changed as his-
tory was being loaded.



