
Why the Plan 9® Distributed System Matters
(DRAFT of 29 December 2003)

Geoff Collyer

ABSTRACT

This paper was the start of an outline for a proposed book. I’ve been told that there’s no
audience for it by a major publisher; judge for yourself. I expect that the audience will be
people who are familiar with computers, probably users ofUNIX® or Linux.

1. Orientation

I am about to argue for Plan 9 and at least implicitly against other systems. I could preface negative
evaluations of aspects of other systems with ‘‘Let’s be honest; you know it’s really true that ...’’ to try to
soften the blows, but I’d rather you read what follows with that in mind. If we’re honest, our existing sys-
tems have lots of problems. We won’t find better solutions by ignoring those problems. I have tried to
write without being too harsh; where I seem to be harsh, I’m trying to emphasise the biggest problems.
Somebody has to say ‘‘the emperorreally has no clothes’’ while most other people are applauding the
lovely invisible clothes, and in this case, that person is me. Onward ...

This is also not about ‘my operating system can beat up your operating system’. I’ve lived on Plan 9
almost exclusively since 1995 (and sporadically before that) and found it to be comfortable and productive,
and I think many other people would too if they took a serious look at Plan 9. I had previously been a
happy user of Inferno,UNIX (many flavours), TOPS-10, and systems so primitive that they had no real
operating systems, just program loaders. I’ve also been an unhappy casual user of some other systems. I
have even been known to enter (small) programs through the front-panel lights and switches, so I like to
think that my judgement is not wholly uninformed. It’s easy to grow attached to the first system (or lan-
guage) you use. By the time I encounteredUNIX , I’d used a few systems, butUNIX blew me away. The
next time I had that experience was when I encountered Plan 9, and by then I’d seen a lot of systems.
When I criticiseUNIX (and Linux), it’s from first-hand experience runningUNIX systems and programming
them, including modifyingUNIX kernels, over many years. (I have a convenient shorthand, ‘‘lunix’’ (pro-
nounced loo-niks), which I use to mean ‘‘UNIX , Linux or both’’.)

2. Introduction

Plan 9 from Bell Labs26 is a distributed operating system, created at Bell Labs in the same research
center, and by some of the same individuals, who created and evolvedUNIX33, but with twenty years expe-
rience withUNIX to draw on. It has been available to anyone for US$350 since its second edition in 1995
and for free via the Web since its third edition in 2001, yet has had relatively little adoption, certainly not
the widespread impact thatUNIX has had. The distribution includes complete source code, documentation
and Intel x86 binaries.

Plan 9 is not just another freeUNIX-like system, such as the free BSDs or Linux, and deserves more
exposure (and wider adoption) than it has seen so far. Plan 9 is not aUNIX port, nor aUNIX clone; it’s
more likeUNIX re-thought, redesigned, and re-implemented with over twenty years of experience. Plan 9
is a new system, re-implemented from the ground up. SomeUNIX commands have been adapted (for
example, to use the Unicode character set and UTF-8 byte encoding of Unicode)8, 37, 38, but Plan 9 really is
a new system. Anyone familiar with the evolution of ResearchUNIX23, 20, 7 beyond Seventh Edition21

shouldn’t be startled by much in Plan 9, but Plan 9 has evolved considerably.

A later distributed system from Bell Labs, Inferno10, 3, is derived from the ideas in Plan 9, and its
kernel shares much code with the Plan 9 kernel, but all code outside the kernel is written in Limbo34, 11, a
safer (but more restricted) language than C32 that borrows from C, Pascal17, 18and CSP16. Limbo might be

Copyright © 2003 Geoff Collyer

- 2 -

compared with Java:15 it compiles to byte code, which is then interpreted or compiled on-the-fly, it per-
forms automatic garbage collection, its character set is Unicode, etc., but I find Limbo’s support for concur-
rent programming to be more convenient than Java’s. Limbo’s threads are not pre-empted and communica-
tion among threads is primarily via messages on channels. There is plenty of locking done, but it’s within
the Limbo run-time support (e.g., serialising access to channels), not directly visible to the programmer.

3. Why Should We Care About Plan 9?

Plan 9 is a general-purpose, multi-user, portable distributed system implemented on a vari-
ety of computers and networks. It lacks a number of features often found in other dis-
tributed systems, including

(i) A uniform distributed name space,
(ii) Process migration,
(iii) Lightweight processes,
(iv) Distributed file caching
(v) Personalised workstations,
(vi) Support for X windows.

� Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey in ‘‘Plan 9 from Bell Labs’’, 1993.

Plan 9 demonstrates that we can do better than (non-Research)UNIX1, 2, which never really adapted
very well to modern networks and graphics. In truth,UNIX has also accumulated an awful lot of rather
crufty ideas and code over the years. Linux is just a clone ofUNIX , except that there is rather less quality
control of the code. Plan 9 is also a delight to use.

Plan 9 is available for free and its licence explicitly permits commercial use. The distribution
includes full sources and documentation. One can recompile all the binaries in the system, including com-
piling for different architectures. As distributed, Plan 9 runs on Intel x86 PCs and clones,
DEC/Compaq/HP ‘‘AlphaPCs’’, Compaq/HP Ipaq 3600s, and some Power PC evaluation boards. Only
peripherals for which Plan 9 drivers exist are supported out of the box. Plan 9 has run on SGIs, Suns and
NeXTs in the past, and a couple of Sun ports are available from the Plan 9 web site,
http://plan9.bell-labs.com/plan9dist .

4. The Users’ and Administrators’ Perspective

4.1. Simpler Administration

Most Plan 9 systems other than file servers are run diskless, or their disks are used only for bootstrap-
ping. Given modern 100base-T (or faster) switched Ethernets, cheap RAM, and Plan 9’s remote file system
protocol, which permits caching, this works much better than you may remember diskless Suns working in
the 1980’s.

Adding a new machine is a matter of adding a few lines to/lib/ndb/local , plugging the
machine into the appropriate Ethernet, and turning it on. PCs also need to run a Plan 9 bootstrap program
since their boot ROMs, uniquely among modern computers, often do not implement booting over the net-
work via BOOTP (or DHCP) and TFTP.

WARNING: It’s time to be brutally honest again. Take a deep breath.UNIX ’s name server,
BIND6, really is a security hazard (look at the CERT alerts for it) and awkward and error-prone to config-
ure (it has its own O’Reilly book). Instead, Plan 9 hasdns (in ndb(8)), which permits specification of for-
ward and reverse maps in one place, with no duplication of data.Dns also generates zone serial numbers
automatically. These two conveniences cure the two most common DNS problems: inconsistent maps, and
forgetting to bump the serial number up, which causes the updated zone data to not propagate.

WARNING: It’s time to be brutally honest again. Take a deep breath.UNIX ’s sendmail4

really is big (˜80,000 lines of C at last count), slow, buggy, difficult to configure correctly (it has its own
fat O’Reilly book) and famously insecure (look at themanyCERT alerts for it, many of them buffer over-
runs). Instead, Plan 9’s mail system,upas (seemail(1))29, is smaller (˜23,500 lines) despite doing more

Copyright © 2003 Geoff Collyer

- 3 -

(such asupasfs(4)), fast, straight-forward to configure, secure (for example, it uses dynamically-sized
strings everywhere, so buffer overruns are not possible), fast and well-written.

Freedom from BIND,sendmail, and local state on each machine are major wins for system adminis-
trators. Terminals, also known as workstations, can be utterly interchangeable, allowing one to work any-
where there is a terminal, which includes laptops and Ipaqs.

4.2. Specialisation

One of the key ideas behind Plan 9 is that specialised systems can be more effective than completely
general-purpose ones. Running the same largeUNIX kernel and daemons on all one’s Suns, for example,
does not make good use of their resources (and probably isn’t good security practice either). A typical
non-trivial Plan 9 installation consists of one or more file servers, one or more CPU servers (compute
servers) and some collection of terminals.

Collecting the permanent storage in one place makes it easier to backup and to find. The file servers
implement daily snapshots of all permanent files back to the beginning of a given file server’s operation,
while recording only the blocks that change each night. Having these snapshots conveniently available per-
mits restoring ones own files without administrative assistance, and that in turn encourages experimenta-
tion, knowing that yesterday’s version of a file can be quickly retrieved if needed. The snapshots also pro-
vide a simple form for revision control. File servers are normally limited to just file service, so that they
continue to provide fast service.

Shared CPU servers normally run all the time, so they provide convenient places to offer services,
such as listening for incoming mail, DNS,cpu(1), andsshrequests. They also tend to be configured with a
lot of RAM and multiple fast processors, so they are good places to perform heavy computation, including
compilation. They may also have faster network connections to the file server(s) than the terminals have.
Upgrading the CPU servers improves the computing base of an entire Plan 9 installation.

Terminals may be small machines by the standards of Microsoft Windows. They typically run one or
more instances of the window system,rio (4)27, plus editors, VNC clients, etc. It is possible to perform on
a terminal any computation that could be done on a CPU server, but it usually makes more sense to do
heavy computing on a CPU server. Conversely, one can run editors, window systems, etc. on the CPU
servers, with local display and with reasonable interactive response, but one gets even better response from
running them locally on one’s terminal.

4.3. Universal Character Set and Encoding

Plan 9 uses a single character set, Unicode, throughout. Unicode covers virtually all the world’s
scripts, including some dead ones. To remain compatible with existing ASCII files, Unicode data are
encoded externally (in files, pipes and network connections) using the UTF-8 encoding. There is thus no
need to switch encodings, as in Microsoft Windows; one character set and one encoding suffice.

Even file names may contain UTF-encoded characters:Ê is a legal file name.

Characters from any script can co-exist within a single file, like this:

Geoff Collyer
(news overview database) NOV

4.4. Better Graphics and Window System(s)

WARNING: It’s time to be brutally honest again. Take a deep breath.X11 is one of the three
worst UNIX components (the other two beingsendmailand BIND). All three really_____ should have
been replaced by now.X11 is a poor window system: big (X usually occupies half of the disk space of
a UNIX distribution and half of the RAM of a runningUNIX system), unresponsive if there’s the least bit of
network or CPU load, complex, and hard to write clients for. The many X toolkits (libraries) try to make it
easier to write clients by layering on more code, but they mostly don’t help much.

Plan 9 provides graphics identically with or without multiplexing (a window system). The window
system,rio , is small, intuitive to use and relatively easy to program, as are the graphics24, 25. (I wrote a

Copyright © 2003 Geoff Collyer

- 4 -

Plan 9 graphics front-end for a Reversi game; it’s 469 lines of C. I have never made the attempt with X,
it’s so daunting.)Rio is also very responsive, even when run remotely. Clicking a mouse button results in
immediate action, not hesitation, perhaps followed at some later date by action. One can userio windows
to connect to non-Plan-9 systems, notably viassh, though there are other, more interesting possibilities
described later.

Although theed andsededitors are available, the most commonly-used editor issam(1), a multi-file,
multi-window mouse-based editor which runs as two processes, editor and display, connected via a pipe or
network connection.Samports forUNIX and Microsoft Windows exist, and it is possible to run the editor
process on a remote non-Plan-9 system with the display running locally. This is a particularly good way to
edit remotely when bandwidth is scarce.

There is also an alternative user interface,acme(4)28, that some people use as their editor.

4.5. Better Networking

WARNING: It’s time to be brutally honest again. Take a deep breath.Sockets have con-
vinced most people that network programming is complicated and hard; it needn’t be. MainstreamUNIX
networking was copied at the University of California at Berkeley from TOPS-20 and Tenex (early DEC
PDP-10 ARPAnet operating systems) intoUNIX without much thought for the appropriateness of the
Twenex mechanisms toUNIX , or even whether they were good mechanisms to start with. So normalUNIX
network applications are festooned with arcane details of particular network protocols and their bizarre
implementations.

Plan 9 is a distributed system, so networking is central to it. Its networking code has to be fast, reli-
able and easy to use. Somewhat more thought has gone into networking in Plan 9. All resources in Plan 9
are accessed via the file system namespace. Network interfaces (e.g., Ethernet cards) are in-kernel file
servers that each serve a small directory tree representing the interface, with a subdirectory for each Ether-
net packet type. Figure 1 shows the files presented by a Plan 9 Ethernet driver.

Protocol stacks similarly serve a small directory tree. In normal use, a protocol stack is bound to an
interface, in part by merging their served files in aunion directorysuch as shown in Figure 2.

Figure 3 shows some representative contents of these files. This directory also contains files served
by dns, theconnection server30, cs, andssl.

Making an out-going connection is done by calling thedial function with an argument such as
tcp!collyer.net!ssh . Dial communicates withcs by reading and writing/net/cs , if it exists.
Cs in turn knows the various network media and protocols available, and how to translate names to numeric
addresses, if necessary, and so places the call and tellsdial what file to open in/net/tcp(for example) to get
a file descriptor for the resulting connection.Cs is a multi-process program, so it does not serialise its call-
ers’ access to the network, and thus isn’t a bottleneck. Ordinary programs are thus isolated from the specif-
ics of making network connections and adapt trivially to new media (e.g., ATM) and new transport proto-
cols (e.g., IPV6, AAL5). To add support for new protocols or media, onlycs, dns, listen, and the kernel
need to be updated and rebuilt; ordinary programs will work with the new protocols and media unchanged.
As a further benefit, shell scripts can make connections by dealing with the raw network plumbing (files
under/net) directly.

Competitive testing has shown that the Plan 9 IP stack is the most robust one known. This stack sup-
ports IP V4 and V6 within a single stack, using IP V6 addressing internally.

4.6. Better Protocols

A distributed system lives and dies by the quality of its network protocols and their implementations.
Internally Plan 9 uses these protocols:9fs, exportfs, rexexec, ncpu, venti. 9fs runs over TCP and the obso-
lescent IL protocol, the others run over TCP only. All were designed specifically for Plan 9.9fs is 9P, the
file system protocol that ties the whole distributed system together. It is used to communicate with device
drivers and file servers alike.

Plan 9 also contains support for, or knowledge of, another 97 UDP or TCP Internet protocols. These
Internet protocols are generally rather poorly designed and hobbled by self-imposed limitations. FTP, the

Copyright © 2003 Geoff Collyer

- 5 -

cpu% cd /net/ether0
cpu% ls -l *
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 0/ctl
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 0/data
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 0/ifstats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 0/stats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 0/type
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 1/ctl
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 1/data
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 1/ifstats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 1/stats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 1/type
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 2/ctl
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 2/data
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 2/ifstats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 2/stats
--r--r--r-- l 0 bootes bootes 0 May 9 15:42 2/type
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 addr
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 clone
cpu% cat 0/stats
in: 7654260
out: 7334433
crc errs: 0
overflows: 0
soft overflows: 0
framing errs: 0
buffer errs: 0
output errs: 0
prom: 0
mbps: 100
addr: 00a0c91f4069

Figure 1: Plan 9 Ethernet driver’s files

File Transfer Protocol, for instance, is excessively complex and awkward and doesn’t provide access to
much of the metadata in a modern file store. It has had to be modified to cope with the wide-spread use of
firewalls (by reducing its complexity somewhat). SMTP, the Simple Mail Transfer Protocol, is not simple
but its insistence on using only the low-order 7 bits of each 8-bit byte limits its capabilities and pushes limi-
tations back into other mail standards, such as MIME. SMTP is a rather slow way to move mail, being a
lock-step protocol that forces each party in the conversation to frequently wait for the other. Yet these pro-
tocols persist because of the extreme political difficulties in amending or replacing them. Many such proto-
cols could be superseded by a common file system protocol with agreed-upon authentication, and 9P2000
(the latest revision of 9P) would be a good candidate.

The Internet protocols suffer from being largely designed in isolation. Thus we have a tower of
Babel of authentication mechanisms and models.factotum(4) copes with the welter of incompatible exter-
nal authentication mechanisms, thus providing the convenience of single sign-on, but the underlying mess
is still there.

4.7. Archival Storage

Plan 9 file servers provide archival storage.venti(8) andfossil(4) together provide Plan 9 file service
while conserving storage. The original Plan 9 file server, written by Ken Thompson, provides archival stor-
age to optical media31, 35. Both file servers provide nightly snapshots which are saved forever, unlike those
provided by various file server appliances, which vanish after a while. It turns out to be handy to have
complete access to the file server’s history. (One can runfossil using aventi store as its permanent storage,
which in turn is stored on an optical-disc jukebox via Ken’s file server,fs(8), thereby conserving optical-

Copyright © 2003 Geoff Collyer

- 6 -

cpu% cd /net
cpu% ls -l *
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 arp
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 bootp
--rw-rw-rw- M 41999 geoff geoff 0 May 16 02:11 cs
--rw-rw-rw- M 42001 geoff geoff 0 May 16 02:11 dns
d-r-xr-xr-x l 0 bootes bootes 0 May 9 15:42 ether0/0
d-r-xr-xr-x l 0 bootes bootes 0 May 9 15:42 ether0/1
d-r-xr-xr-x l 0 bootes bootes 0 May 9 15:42 ether0/2
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 ether0/addr
--rw-rw-rw- l 0 bootes bootes 0 May 9 15:42 ether0/clone
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 icmp/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 icmp/stats
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 icmpv6/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 icmpv6/stats
d-r-xr-xr-x I 0 bootes 0 May 9 15:42 il/0
d-r-xr-xr-x I 0 bootes bootes 0 May 9 15:42 il/1
[...]
d-r-xr-xr-x I 0 network bootes 0 May 9 15:42 il/9
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 il/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 il/stats
--r--r--r-- I 0 network bootes 0 May 9 15:42 ipgate6
d-r-xr-xr-x I 0 bootes 0 May 9 15:42 ipifc/0
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 ipifc/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 ipifc/stats
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 iproute
--r--r--r-- I 0 network bootes 0 May 9 15:42 ipselftab
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 log
--rw-rw-rw- I 0 network bootes 60 May 9 15:42 ndb
d-r-xr-xr-x D 0 geoff bootes 0 May 9 15:42 ssl/0
d-r-xr-xr-x D 0 bootes bootes 0 May 9 15:42 ssl/1
d-r-xr-xr-x D 0 geoff bootes 0 May 9 15:42 ssl/2
--r-xr-xr-x D 0 bootes bootes 0 May 9 15:42 ssl/clone
d-r-xr-xr-x I 0 bootes bootes 0 May 9 15:42 tcp/0
d-r-xr-xr-x I 0 bootes bootes 0 May 9 15:42 tcp/1
[...]
d-r-xr-xr-x I 0 network bootes 0 May 9 15:42 tcp/87
d-r-xr-xr-x I 0 none bootes 0 May 9 15:42 tcp/9
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 tcp/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 tcp/stats
d-r-xr-xr-x I 0 bootes bootes 0 May 9 15:42 udp/0
d-r-xr-xr-x I 0 bootes bootes 0 May 9 15:42 udp/1
[...]
d-r-xr-xr-x I 0 network bootes 0 May 9 15:42 udp/4
--rw-rw-rw- I 0 network bootes 0 May 9 15:42 udp/clone
--r--r--r-- I 0 network bootes 0 May 9 15:42 udp/stats

Figure 2: Plan 9 network interface files

disc storage.) The nightly snapshots appear as complete file system trees under/n/dump/2003/0513 ,
for example, for 13 May 2003, yet record only changed blocks in permanent storage. The ability to view
and retrieve files from the past with ordinary commands such ascp andcat makes it safe to experiment,
knowing that it’s easy to restore files if the experiment fails.

Copyright © 2003 Geoff Collyer

- 7 -

cpu% cd /net
cpu% cat arp
ether OK 10.9.0.3 00a0c91f4069
ether OK 10.9.0.1 00a0c9e02756
ether OK 10.9.0.4 0002e3028e78
ether OK 10.9.0.6 000094d23e8a
ether OK 10.9.0.10 00a0c9e0162c
cpu% cat iproute
10.0.0.0 /128 10.0.0.0 4b ifc -
10.9.0.0 /112 10.9.0.0 4i ifc 0
10.9.0.0 /128 10.9.0.0 4b ifc -
10.9.0.3 /128 10.9.0.3 4u ifc 0
10.9.255.255 /128 10.9.255.255 4b ifc -
10.255.255.255 /128 10.255.255.255 4b ifc -
255.255.255.255 /128 255.255.255.255 4b ifc -

Figure 3: Contents of Plan 9 network interface files

5. Programmers’ View

5.1. Uniform File System Interface vs. Big Libraries and APIs

Functionality that might be provided by shared libraries or even conventional libraries on other sys-
tems is often provided on Plan 9 via file servers, whether in-kernel, such as provided by device drivers, or
in user mode, as is more common. Some of these file servers are surprising to first-time Plan 9 users since
they include the window system,rio (4), the dumps (backup system),/proc 19, which Linux is emulating
(poorly), programs to interpret CDs, foreign filesystems and tapes in various old formats, a spam filter,
ratfs(4), a program to present mailboxes as file trees,upasfs(4), the environment,env(3), the IP protocol
stack,ip(3), a serial-console multiplexor,consolefs(4), and an FTP client,ftpfs(4).

These file servers all present their interfaces using the 9P remote file system protocol, which serves
as the glue that ties the Plan 9 distributed system together. Unlike NFS, 9P can serve files with dynamic
contents and yet permits caching. Since all file accesses in Plan 9 are through 9P, 9P has to be able to cope
with any type of file, also unlike NFS. 9P makes it possible and efficient to provide many services outside
the kernel but with a file system interface; a support library,9p(2), makes it relative painless to write such
servers.

5.2. Processes and Threads

Plan 9 has one weight of process (light), but programs can control which of their resources are shared
across a fork (seerfork in fork(2)). For those who like the added complexity of multiple non-concurrent
threads sharing address space, there’s a thread library that uses no kernel support to implement threads.
Plan 9 has noselectsystem call, which tends to force programs to become giant, unstructured event loops.
Instead, programs use multiple processes or threads to wait for events to happen. Since processes are
cheap, this is not a performance disaster.

5.3. Better Libraries

WARNING: It’s time to be brutally honest again. Take a deep breath.Plan 9’s libraries were
built from the beginning to support multiprocessing well, in contrast to the situation onUNIX , where
libraries have been hammered and twisted to try to adapt to multiple processes or threads sharing address
space, usually not very well (e.g., where isfselect, a stdio version of select that takes buffering into
account?). Almost from the beginning, the libraries have been built to support the Unicode character set
and its UTF-8 encoding as the native forms of each on Plan 9. Since ASCII is a proper subset of both, this
is not as traumatic as a system which makes no attempt to encode Unicode characters (which doesn’t really
work in a world that has pipes and network connections) or which uses some warped encoding, such as

Copyright © 2003 Geoff Collyer

- 8 -

UTF-7. In particular, a stream of ASCII characters is also a valid UTF-8 representation of those characters,
so ASCII files work unchanged in a UTF-8 world.

5.4. Better Compilers

Ken Thompson wrote the Plan 9 C compilers36, assemblers and loaders. The compilers are fast, the
loaders are smart and the assemblers are rarely used (ordinary C compilation bypasses them). All of these
programs are cross-compilers, -assemblers and -loaders. All the compilers are related and compile the same
language, so there’s almost no need for conditional compilation. They can be run on Plan 9 systems of any
architecture and generate code for any supported architecture. It’s common, assisted bymk(1), to generate
binaries of a program for all architectures at once, relying heavily on parallel compilation, again courtesy of
mk. There is one header file per library and headers are included in a defined order, eliminating the clutter
and inefficiency ofUNIX ’s headers. The headers use#pragma to tell the loader which libraries to link
against, further simplifying compilation.

5.5. Portability

Almost the entire system is highly portable. Obviously, parts of the kernel and the compilers, assem-
blers and loaders are machine-dependent, but once those have been written or adapted for a new architec-
ture, the rest of the system just compiles and works, and this has been done repeatedly for new hardware13.

5.6. Importing UNIX Programs

There is an ANSI/POSIX5, 12 emulation environment (APE) used to import bigUNIX programs that
change frequently and thus aren’t worth the effort to adapt to Plan 9 (repeatedly), such asghostscript.

5.7. Efficiency

Plan 9 is efficient enough to run on small systems, though the definition of ‘small’ keeps growing.
Machines large enough to run Microsoft Windows comfortably are always excessively large by Plan 9 stan-
dards, so Plan 9 continues to run well even on ‘‘ancient’’ hardware.

6. Security & Configurability

6.1. Namespaces

Plan 9 permits each process to have its own, distinct (file) namespace. More so than inUNIX , every-
thing that can be addressed has a name in the file system namespace, which doesn’t mean that the thingis a
conventional disk file, merely that it looks like one. There are conventional names for things, such as
/bin for the directory where executable programs and scripts are found. Union directories replace the
many search path mechanisms ofUNIX . Namespaces are malleable and provide simple solutions to multi-
plexing (e.g., in the window system) and permit substitution of resources, including those from other
machines. No sound card on your machine? Import your neighbour’s (with his consent) and use it as if it
were your own. The malleability of namespaces is at odds withUNIX set-id, but Plan 9 doesn’t have set-id;
instead it has network services that perform cryptographic authentication of user requests.

6.2. Authentication

Secstore(1) provides secure encrypted storage of passwords and keys of all sorts, andfactotum(4)
implements single-sign-on and key management in general9. Plan 9 services do not exchange clear-text
passwords among themselves over the network; occasionally Plan 9 programs provide options to permit
clear-text passwords to cope with (broken) protocols as such as POP that encourage them. Plan 9 has no
super-user. There are local host owners, with additional privileges over their particular machines, but those
privileges do not extend over the network. Users and groups are unified and greater use of groups, and the
willingness to trust groups and their administration, minimises the need for super-user access.

Copyright © 2003 Geoff Collyer

- 9 -

7. What’s Missing?

web browsers, usevncv(1) (Plan 9 is a distributed system) oremu(9).

Microsoft software

Drivers for random devices.

8. Summary

Plan 9 solves problems in distributed computing, file storage, internationalisation and system admin-
istration that still plagueUNIX and other systems. It also provides a pleasant and powerful programming
environment in which to tackle problems that it doesn’t solve right out of the box. It’s available for free
and can be used commercially without fees or royalties. It runs on common platforms (PCs, Ipaqs) and
some less common ones (Power PC evaluation boards), and is relatively easily ported to new hardware (the
limiting factor here is usually obtaining adequate programming documentation for the hardware). In the
past, it has run on NeXT, SGI and Sun machines.

A quarter-century ago, Doug McIlroy, Elliot Pinson and Berkeley Tague wrote in The Bell System
Technical Journal, ‘‘UNIX is not the end of the road in operating systems innovations, [...]’’22, but many
people still seem to think that it is, and I include Linux as aUNIX clone. Even a system as well-designed
and malleable asUNIX originally was eventually exceeds its design limitations, particularly in the hands of
those who are not master programmers, as the creators ofUNIX are and were. Attempts to delay facing that
reality result in a bigger, clunkier system that becomes less elegant and efficient each day, without much
substantive improvement14.

Windows XP ... is the ‘‘most reliable Windows ever.’’ To me, this is like saying that aspara-
gus is ‘‘the most articulate vegetable ever.’’ � Dave Barry

Microsoft’s Windows is not a direction that I want to go. Its graphics are prettier thanUNIX ’s, but
the rest of the system, particularly the parts not visible on the screen, are complicated and have proven to be
insecure. Without access to Windows source, it’s hard to know about bad the complexity and insecurity
really are. The system does not seem elegant and I don’t see progress relative toUNIX here. Microsoft
seems to prefer complex, ever-churning APIs to simple file system interfaces.

It’s time to move on. It has been for a while.

9. References and Further Reading

As always when dealing with the Internet, all RFCs cited may have been updated or replaced by later ones.

1. Berkeley Software for UNIX on the VAX: 4.1bsd version of May, 1981,Univ. of California at Berke-
ley (May 1981).

2. System V Interface Definition,AT&T (1985).

3. Inferno 2.0 Reference Manual,Lucent Technologies (1997).

4. Eric Allman and Miriam Amos, ‘‘Sendmail Revisited,’’ pp. 547-555 inUSENIX Conference Pro-
ceedings, USENIX, Portland, OR (Summer 1985).

5. American National Standards Institute, X3J11 committee,American National Standards Institute
X3.159-1989 -- Programming Language C, = ISO/IEC 9899:1990,ANSI, New York (1989).

6. James M. Bloom and Kevin J. Dunlap, ‘‘Experiences Implementing BIND, A Distributed Name
Server for the DARPA Internet,’’ pp. 172-181 inUSENIX Conference Proceedings, USENIX,
Atlanta, GA (Summer 1986).

7. Computing Science Research Center, AT&T Bell Laboratories, Murray Hill, New Jersey,UNIX
Research System Programmer’s Manual, Tenth Edition,Saunders College Publishing (1990).

8. The Unicode Consortium,The Unicode Standard, Worldwide Character Encoding, Version 1.0, Vol-
ume 1,Addison Wesley, New York (1991).

9. Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quinlan, ‘‘Security in Plan 9,’’ inPlan 9
Programmer’s Manual, Fourth Edition(April 2002).

Copyright © 2003 Geoff Collyer

- 10 -

10. S. M. Dorward, R. Pike, D. M. Ritchie, H. W. Trickey, and P. Winterbottom, ‘‘Inferno,’’Proc. IEEE
Computer Conference (COMPCON), San Jose, California (1997).

11. S. M. Dorward, R. Pike, and P. Winterbottom, ‘‘Programming in Limbo,’’Proc. IEEE Computer
Conference (COMPCON), San Jose, California (1997).

12. Institute of Electrical and Electronics Engineers,Portable Operating System Interface (POSIX), Part
1: System Application Program Interface (API) [C Language] (IEEE Std 1003.1-1990) = ISO/IEC
9945-1:1990,IEEE, New York (1990).

13. Bob Flandrena, ‘‘Adding Application Support for a New Architecture in Plan 9,’’ inPlan 9
Programmer’s Manual, Fourth Edition(April 2002).

14. C. H. Forsyth, ‘‘More Taste: Less Greed? or, Sending UNIX to the Fat Farm,’’ pp. 161�172 inPro-
ceedings of the Summer 1990 UKUUG Conference, UKUUG, London (July 9�13, 1990).
http://www.caldo.demon.co.uk/doc/taste.pdf

15. James Gosling and William N. Joy,The Java Programming Language,Sun Microsystems.

16. C. A. R. Hoare, ‘‘Communicating Sequential Processes,’’Communications of the Association for
Computing Machinery (ACM)21(8), pp. 666-677 (1978).

17. K. Jensen,Pascal User Manual and Report,Springer-Verlag (1978). (2nd edition)

18. B. W. Kernighan, ‘‘Why Pascal is Not My Favorite Programming Language,’’ Comp. Sci. Tech.
Rep. No. 100 (July 1981).

19. T. J. Killian, ‘‘Processes as Files,’’USENIX Association Conference Proceedings, Salt Lake City,
Utah, pp. 203-207 (Summer 1984).

20. AT&T Bell Laboratories, inUNIX Programmer’s Manual, Ninth Edition, Volume One, ed. M. D.
McIlroy, Murray Hill, New Jersey (September 1986).

21. Bell Laboratories,UNIX Programmer’s Manual,Holt, Rinehart and Winston (1982).

22. M. D. McIlroy, E. N. Pinson, and B. A. Tague, ‘‘UNIX Time-Sharing System: Foreword,’’Bell Sys.
Tech. J.57(6), pp. 1899-1904 (1978).

23. M. D. McIlroy, ‘‘A Research UNIX Reader: Annotated Excerpts from the Programmer’s Manual,
1971-1986,’’ Comp. Sci. Tech. Rep. No. 139 (June 1987).

24. Rob Pike, ‘‘Window Systems Should Be Transparent,’’ pp. 279-296 inComputing Systems, USENIX
(Summer 1988).

25. Rob Pike, ‘‘A Concurrent Window System,’’ pp. 133-153 inComputing Systems, USENIX Associa-
tion (Spring 1989).

26. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, Tom Duff, and Gerard Holzmann, ‘‘Plan
9: The Early Papers,’’ Comp. Sci. Tech. Rep. No. 158 (July 1991).

27. Rob Pike, ‘‘8-1/2, the Plan 9 Window System,’’ pp. 257-266 inUSENIX Conference Proceedings,
USENIX, Nashville, TN (Summer 1991). FTP - research.att.com:/dist/plan9doc/4; local - 8half.ps

28. Rob Pike, ‘‘Acme: A User Interface for Programmers,’’ pp. 223-234 inUSENIX Conference Pro-
ceedings, USENIX, San Francisco, CA (Winter 1994).

29. David L. Presotto, ‘‘Upas - a simpler approach to network mail,’’ pp. 533-538 inUSENIX Confer-
ence Proceedings, USENIX, Portland, OR (Summer 1985).

30. D. L. Presotto and D. M. Ritchie, ‘‘Interprocess Communication in the Eighth Edition Unix Sys-
tem,’’ pp. 309�316 in Usenix Summer Conference Proceedings, Portland 1985, Usenix, Portland,
OR, USA (June 11�14, 1985).

31. Sean Quinlan, ‘‘A Cached WORM File System,’’Software�Practice and Experience21(12),
pp. 1289�1299 (December 1991).

32. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, ‘‘UNIX Time-Sharing System: The
C Programming Language,’’Bell Sys. Tech. J.57(6), pp. 1991-2019 (1978).

Copyright © 2003 Geoff Collyer

- 11 -

33. D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’Bell Sys. Tech. J.57(6),
pp. 1905-1929 (1978).

34. Lucent Technologies, ‘‘The Limbo Language Definition,’’ inInferno User’s Guide(1997).

35. Ken Thompson, ‘‘The Plan 9 File Server,’’ inPlan 9 Programmer’s Manual, Fourth Edition(April
2002).

36. Ken Thompson, ‘‘Plan 9 C Compilers,’’ inPlan 9 Programmer’s Manual, Fourth Edition(April
2002).

37. C. Weider, C. Preston, K. Simonsen, H. Alvestrand, R. Atkinson, M. Crispin, and P. Svanberg,RFC
2130: The Report of the IAB Character Set Workshop held 29 February - 1 March, 1996,ISI, Marina
Del Ray, CA (April 1997).

38. F. Yergeau,RFC 2279: UTF-8, a transformation format of ISO 10646,ISI, Marina Del Ray, CA
(January 1998).

Copyright © 2003 Geoff Collyer

