Raster Graphics in Plan 9

Tom Duff
td@plan9.att.com

1. Introduction

Section 9 of the Plan 9 Programmer’s Manual describes a file format for storing ras-
ter images (picfile(9.6)) and a suite of commands and libraries for manipulating them.

Binaries of the picture manipulation programs are located in the directory
/$cputype/bin/fb. Examples in this discussion assume that you have run

bind -b /$cputype/bin/fb /bin

to merge the £b commands with the regular contents of /bin. For example, you might
put this command in $home/lib/profile. Alternatively, you can prefix any
program name from Section 9 with the string £b/, running it as £b/program.

2. Pictures and picfiles

For present purposes, a picture is a rectangular array of n-byte pixels. A pixel of a
full-color picture has three bytes, encoding the brightness of a CRT’s red, green and
blue phosphors at a particular spot on the screen. A monochrome picture needs only
one byte per pixel to describe its brightness. In either case, a byte containing 0 is black
and 255 is full intensity.

As a storage-saving compromise, some pictures are represented by one-byte pix-
els with an associated color map, a table of 256 3-byte entries. In this case the pixel
values are used as indices to look up 3-byte colors in the color map.

The bounding rectangle (x0,y0,x1,y1) of a picture is represented as in the
graphics(2) section of the Programmer’s Manual. (See the figure.) That is, (x0,y0) is the
coordinate of the upper-leftmost pixel of the picture and (x7-1,y71-1) is the coordinate
of the lower-rightmost pixel. X increases from left to right, and Y increases from top to
bottom. Thus xO0<x1 and yO<yl. Pixels in the order they are scanned out on the CRT
face are in row-major order in the pixel array.

— = increasing x

(x0,y0)

SN

increasing y

(x1-1,y1-1)

The picture file format described in picfile(9.6) is fairly simple. Such a picfile
encodes a rectangular array of n-channel pixel records, each channel being a single
byte. The file contains a textual header that describes the dimensions and encoding of

-2

the picfile. At the end of the header is an empty line — two newline characters in suc-
cession. Following the header is a binary encoding (possibly compressed) of the pixel
data in scan-line order. The header may indicate that the picfile has a color map, in
which case a burst of 256 3-byte records separates the header from the pixel data.

The lines of the picfile header are attribute=value pairs. The value of the
WINDOW= attribute specifies the dimensions of the picfile, and the CHAN= attribute
names the channels. Most often you will see CHAN=rgb for full-color pictures or
CHAN=m for monochrome or color mapped pictures. Some pictures have CHAN=rgba.
These are full color with an « channel. Most of the objects that we make pictures of are
not rectangular, contrary to the WINDOW= attribute. The « channel gives us a way of
describing a picture’s shape. Think of & as a fraction between 0 and 1 (represented by
255) that indicates whether the picture covers the pixel or not. Fractional o values indi-
cate pixels in which the background should shine through, because the foreground is
translucent or only partly covers the pixel. The paper ““Compositing digital images”, by
Thomas Porter and Tom Duff (1984 SIGGRAPH Proceedings, pp. 253-258), describes
how « is used to control anti-aliased picture compositing operations.

Here is a sample image, called pjw.

This is its header:

TYPE=runcode

WINDOW=0 0 320 240

NCHAN=1

CHAN=m

COMMAND=resample 320 pjw
COMMAND=transpose
COMMAND=resample 240
COMMAND=transpose
COMMAND=xpand pjw 0 255 0 251

The COMMAND= lines were inserted by the various programs used to create the file. It
was resampled to 320x240 resolution by the pipeline

resample 320 pjw | transpose | resample 240 | transpose
and had its contrast adjusted by xpand. Resample, transpose, and xpand are
discussed below.

The picinfo command allows you to examine a picfile’s header, but

sed '/A$/q’ file
works just as well.

The hist and bbox commands extract other interesting information from pic-
files. Hist prints a histogram of a picfile’s pixel values, and bbox prints the bounding
rectangle of the non-zero (or, when given an appropriate flag, any other value) pixels of
a picfile.

All commands that read or write picture files understand the names IN and OUT to

-3-

be synonyms for standard input and output.

3. Displays

Plan 9 terminals have a CRT that displays the contents of a frame buffer, a large
memory containing a rectangular array of pixels. Most Plan 9 terminals have one, two or
eight-bit pixels. In Plan 9, one-bit pixels are white when zero and black when one.
Two-bit pixels may take on four shades of grey, with white again corresponding to zero.
Eight-bit frame buffers generally have a color map.

The colors [—gfr] command creates a small window and fills it with a 16 by
16 array of squares, each of a different color in the color map. Pixel value zero is in the
upper left-hand corner and colors increase by ones across each row.

The color map can be loaded from a file by the command getmap file. Getmap
searches for files in the current directory and in /1ib/fb/cmap. A color map file con-
tains 256 3-byte records. The command

getmap bw

loads a color map containing 256 shades of grey, effectively converting the terminal
from color to monochrome, while

getmap 9

gets the Plan 9 default color map, loaded by the kernel at boot time and expected by
many programs.

The 9v command creates a new window and displays a picture file in it. If the pic-
ture contains a color map, 9v loads it into the display. If the picture is full color (24 bits
per pixel), 9v converts it to monochrome before displaying it.

Non-Plan 9 systems support innumerable other picture file formats. 9v can deci-
pher pictures in many foreign formats — it uses their file names as a clue to the format,
as in this table:

O*.tga Truevision TARGA format
U« tif TIFF (Tagged Image File Format)
Ue tiff TIFF (Tagged Image File Format)
* - Xbm X Window System bitmap

[(Name Format O
E“ .gif Compuserve GIF format S
0 -ega IBM-PC EGA dump 0
* . face USENIX facesaver format 0
O*.jpeg Jjfif-format jpeg O
O+, jpg jfif-format jpeg O
Os - O
O°-pcx Pa|_ntbrl_Jsh pcx format 0
0 .rle University of Utah Run-Length Encoded
0% .sgi Silicon Graphics image file O
0
0
0
0
[]

Depending on the name of a file as a guide to its image format can be unreliable.
The cvt2pic command recognizes foreign image files by their contents and converts
them to picture files, so

cvt2pic file | 9v

may succeed where a naked 9v command would fail. There’s much more to know
about converting image file formats. Look at cvt2pic(9.1) for more detail and
pic2ps(9.1) for a token nod at converting picfiles into formats that may be useful else-
where.

9v’s conversion of full-color pictures to monochrome is often inappropriate. In

-4 -

that case, the 3tol command is a useful intermediary. Its two arguments are the name
of a color map and a picfile (default standard input). It outputs an approximation of its
input picture using the given color map. So, a full-featured thunderclap to view a color
picture in a foreign format is

cvt2pic file | 3tol 9 | 9v

Beware — there’s a limit to how well 3tol can approximate its input. In particular, if
the original file was a GIF or EGA-format picture, it already had 8-bit pixels and a color
map, so running it through 3tol wouldn’t improve things and may very well make
them much worse.

4. Picfile manipulation

Often you will need to convert a picture to have a particular size, or with a particu-
lar set of channels. The pcp (picfile copy) command will often do the job. For example,

pcp —-w 0 70 320 125 pjw eyes
copies pjw to eyes. It copies only pixels in the window (0,70,320,125). This is the

result:

Generally, pcp lets you select any window and any set of channels (in any order) from
the input picture and rename the channels arbitrarily. It will use the NTSC luminance
formula, m=.299%xr+.587xg+.114xb, to synthesize CHAN=m from CHAN=rgb and
vice versa. Read pcp(9.1) for more details.

Several commands can alter a picfile’s geometry in more complicated ways. The
resample command will arbitrarily adjust the width of a picture by optimal anti-
aliased resampling. It does a very good job (the best possible, in some precise sense),
but it only works horizontally. To resample vertically, you can use it in conjunction with
transpose, which, unsurprisingly, computes a picfile’s transpose. This pipeline res-
cales a picfile in both directions:

resample xsize file | transpose | resample ysize | transpose

The transpose command has flags that will make it rotate multiples of 90° or
mirror-reflect a picture vertically or horizontally — the transpose(9.1) page in the
Programmer’s Manual gives more details, and also describes rotate, which rotates
pictures by arbitrary angles. Pdup(9,1) describes simpler and faster program that mag-
nifies by duplicating pixels, giving a blocky appearance to its output. For example,

pcp —w 120 80 153 100 pjw | pdup 8 8

produces this output:

5. Creating new images

The commands described so far view pictures, convert between formats, and adjust
their shapes and configurations in simple ways. The following commands create new
pictures, either from whole cloth or by modifying and combining existing pictures.

The card command outputs a picture file all of whose pixels are the same color.
The ramp command makes slightly more exciting pictures that blend between two col-
ors from edge to edge. For example,

ramp -v —w 0 0 320 240

creates a 320x240 vertical ramp:

There are three categories of program that transform a single image: those that
operate pointwise (that is, the output pixel values depend only on the corresponding
input pixel), ‘neighborhood’ operations, for which the output is some combination of
several pixels surrounding the corresponding input pixel, and half-toning or color-
quantization programs.

Pointwise operations tweak the intensity or color of the input picture. The xpand
command can expand or compress the range of pixel values, adjusting the picture’s
contrast. By default, it expands the range of pixel values in its input, mapping the low-
est input pixel value to zero and the highest to 255. Optionally, the range of output
and/or input pixel values can be specified on the command line. Thus,

xpand pjw 255 0 0 255

interchanges black and white, producing a negative image:

He (an abbreviation of Histogram Equalization) evens out its input’s distribution of pixel
values, making it as even as possible. The cmap command maps its input’s pixel values
through a color map. It works on an original that has CHAN=rgb, and uses the input
pixels’ red, green and blue channels to index the red, green and blue of the color map.
For example,

pcp —crgb pjw OUT | cmap 5.oclock.shado

produces this output:

Since pjw is a CHAN=m picture, we must use pcp to convert it to CHAN=rgb before
passing it through cmap.

Remap tries to be the inverse of cmap. It may not succeed because the cmap
mapping may not be invertible. Its output has rgb set to indices of the color map
entries that best approximate the input’s rgb.

The filters(9.1) manual page describes a group of programs that operate on neigh-
borhoods. These include operations for blurring or sharpening images, adaptively
adjusting their contrast, detecting or enhancing edges, and removing or exaggerating
noise.

Adapt does adaptive contrast enhancement. It finds the minimum and maximum
values in a 7x7 window around each pixel and remaps the center pixel using the linear
function that sends the minimum to zero and the maximum to 255. The result of
adapt pjwis

Ahe does adaptive histogram equalization. In 17x17 windows it counts the num-
ber of pixels whose value is less than the center pixel, counting 2 for each pixel equal
to the center value. The output is just the count scaled to be between 0 and 255. For
example, ahe pJjw produces this result:

Crispen and laplace are high-pass filters that sharpen edges. Crispen is

-7 -

more extreme than 1laplace. Here is the output of crispen pjw:

Edge, edge?2, and edge3 are all edge-detecting filters. Edge2 usually pro-
duces the best results. The output of edge2 pjwis

Combining the output of an edge detection operator with the original image enhances
the edges.

edge2 pjw | lerp IN .3 pjw

produces this result:

In this example the 1erp command interpolates pixel values linearly between the
two images. The first image’s pixels are multiplied by the coefficient .3 and added to .7
(that is 1-.3) times the second.

Median and nonoise are noise-reduction filters. They try to reduce the ampli-
tude of random signals without affecting the underlying image. Smooth low-pass fil-
ters the image, blurring all the details. For example,

smooth pjw | smooth | smooth

produces this result:

The limited color resolution of many displays, and particularly of hard-copy output
devices, makes reducing the number of colors used in an image a popular and compli-
cated topic. The floyd(9.1) page of the Programmer’s Manual is devoted to programs
that reduce grey-scale images to one bit per pixel. The best of these is probably
floyd. The output of floyd pjwis

The quantize(9.1) page describes programs that try to reduce full-color (24 bit-
per-pixel) pictures to 8 bits per pixel.

6. Composite images

The lam(9.1) page describes four commands that read multiple picture files and
paste them together in different ways. The piccat and picjoin commands conjoin
their inputs top-to-bottom and left-to-right. The 1am command overlays its inputs so
that their coordinate systems match; posit does likewise, but uses its inputs’ & chan-
nels to let background images show through. For example

pcp —crgba pjw OUT | posit 9ball IN

produces this result

Pjw must first be passed through pcp because posit expects CHAN= attributes
of all its inputs to match.

