Bootstrapping Plan 9 on PCs

Geoff Collyer
geoff@plan9.bell-labs.com

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

What’s interesting or tricky about bootstrapping Plan 9 on PCs?

Introduction

Plan 9 has new PC bootstraps, 9boot and 9load, replacing the decade-old 9pxeload and
9load programs. What did we learn while writing them?

PC Constraints

The IBM PC imposes quite a few constraints on bootstrap programs (programs that load
operating system kernels). A PC starts executing in 16-bit ‘real’ (Intel 8086) mode and
has no boot monitor, as other machines do, just a primitive BIOS that will perform a
power-on self-test (POST) and attempt to read boot sectors from disks or load a modest
payload from the network via TFTP. (Actually some new machines have slightly less
primitive boot loaders called (U)EFI, but we don’t deal with EFl.) The boot sectors must
load further bootstrap programs that resemble the TFTP payload. These bootstrap pro-
grams can only address the first megabyte of memory until they get out of real mode,
and even then the upper 384KB of the initial megabyte is reserved for device ROMs.

BIOS calls (via the INT instruction) only work in real mode, so the bootstraps execute
BIOS calls to learn the machine’s memory map and power management configuration,
and stash the results in the first megabyte for later retrieval by the loaded kernel.
Empirically, some BIOSes enable interrupts (with STI instructions) during BIOS calls, so
the bootstraps disable them again after each call; failure to do so often results in an
interrupt, perhaps from the clock, resetting the machine. 91oadusb returns briefly to
real mode to read USB devices and has mixed results with that.

Getting into 32-bit protected mode permits addressing the first 4GB of memory, but
first it is necessary to enable the A20 address line (the 1<<20 bit). For (extreme) back-
ward compatibility, this bit is normally held to zero until software requests that it be
released, and holding it to zero will cause references to the second megabyte to be
mapped to the first, etc., causing bizarre-seeming memory corruption. The old tech-
nique was to ask the keyboard controller to release it, but some systems now have no
keyboard controller (they are servers or have USB keyboards). We have found it neces-
sary to keep trying different methods until one succeeds and is verified to have suc-
ceeded. The new bootstraps also try an INT 15 BIOS call and manipulation of port
0x92 (‘system control’ on some systems).

Even in protected mode with A20 enabled, some systems force a gap in the physical
address space between 15MB and 16MB, which must be avoided.

Plan 9 Requirements

e The new bootstraps must be able to load 64-bit amd64 kernels as well as 386 ones.
In addition to Plan 9 boot image format, the new bootstraps understand ELF and
ELF64 formats.

e Plan 9 kernels need to be started in 32-bit protected mode and implicitly assume
that A20 is enabled.

e They expect a parsed /cfg/pxe/ether or plan9.ini file to be present at physi-
cal address 0x1200 and that 9/oad will have added entries to it describing any disk
partitions found. (9boot does not do this and so kernels loaded by it that care about
disk partitions will need readparts=inplan9.ini.)

e They expect automatic power management information obtained from the BIOS to be
present in the first megabyte.

e Our amd64 kernels (9k, Nix, etc.) also expect a Gnu multiboot header containing
any arguments and a memory map.

Non-Requirements
e The bootstraps should ignore secondary processors, leaving them in reset.
e The bootstraps need not do anything with floating point.

Techniques and Tricks

Our new bootstraps are stripped-down Plan 9 PC kernels without system calls and user
mode processes. They share the vast majority of their code with the ordinary PC ker-
nels; about 10,000 lines of C are new or different in the bootstraps. In particular, they
use the ordinary PC kernel’s device drivers, unmodified. 9boot loads kernels via PXE;
9load loads kernels from disk. This is more specialised than the old all-in-one 9/oad.

From protected mode, the bootstraps initially enable paging for their own use. Before
jumping to the loaded kernel, they revert to 32-bit protected mode, providing a known
initial CPU state for the kernels.

Self-decompression of the bootstraps can help to relieve the 512KB/640KB payload
limit. Russ Cox’s decompressing header* code is about 9K all told, including BIOS calls
to get APM and E820 memory map info. We only bother with this currently for 9boot.
The bootstraps also will decompress gzip-ped kernels loaded from disk, mainly for CD
or floppy booting, where they are limits on kernel size.

Figure 1 shows the memory map in effect while the bootstraps run.

Our USB stack (at least 3 HCI drivers plus user-mode drivers, implying system calls and
user-mode support) is too big to fit in the first 640KB, so the bootstraps try to get
BIOSes to read from USB devices and some of them do.

We strongly prefer PXE booting; disk booting is a poor second. PXE booting minimises
the number of copies of kernels that must be updated and ensures that machines boot
the latest kernels. Reading via 9P (as user none) would be even better: just read
/cfg/pxe/$ether and /386/9pccpu. This would probably require adding
devmnt back into the bootstrap kernels.

*see http://plan9.bell-labs.com/wiki/plan9/Replacing_91oad

Figure 1: Layout of physical memory during bootstrapping

0 misc., including bios data area
31K start of pxe decomp + compressed 9boot.
decompresses to 9MB.
64K start of pbs
512K pxe loader from ROM
640K UMB; device ROMs
™ kernel
9M 9boot after decomp. (decompresses
kernel.gz at 13M.) loads kernel at 1M.
13M (kernel.gz)
15M no-man’s land
16M malloc arena for 9boot

Future Hoerrors Directions

We haven’t dealt at all with (U)EFI, ‘secure boot’, GPTs nor GUIDs. We can use Plan 9
partition tables instead of GPTs to address disks larger than 2 TB.

Lessons Learned

A disabled A20 line can masquerade as all sorts of baffling problems. It is well worth
ensuring that it is truly enabled.

Virtual-machine hypervisors can be good test-beds and provide better crash diagnostics
than the blank screen you get on real hardware, but they can also mislead (e.g., amd64
kernels on Virtualbox, Vmware 7 on Ubuntu 12.04).

All of these bootstrap programs and the BIOS (and POST) can be avoided, once Plan 9 is
running, by using /dev/reboot as packaged up in fshalt(8), which is much faster.

