
Grave Robbers from Outer Space
Using 9P2000 Under Linux

Eric Van Hensbergen
IBM Austin Research Lab

Ron Minnich
Los Alamos National Labs

Abstract

This paper describes the implementation and use of the Plan 9 distributed resource protocol 9P under the Linux
2.6 operating system. The use of the 9P protocol along with the recent addition of private name spaces to the 2.6
kernel creates a foundation for seamless distributed computing using Linux. We review the design principles and
benefits of Plan 9 distributed systems, go over the basics of the 9P protocol, describe 9P extensions to better
support UNIX® file systems, and show some example Linux distributed applications using 9P to provide system
and application services. We conclude by providing a performance analysis of the protocol versus NFS for
sharing a static file system.

Motivation

This paper describes the implementation and use of the
Plan 9 design principles and infrastructure under the
Linux operating system with the intent of providing a
unified ubiquitous distributed environment for the
system and applications. Plan 9 [Pike90] was a new
research operating system and associated applications
suite developed by the Computing Science Research
Center of AT&T Bell Laboratories (now a part of
Lucent Technologies), the same group that developed
UNIX , C, and C++. Plan 9 was initially released in 1993
to universities, and then made generally available in
1995 [9FAQ]. Its core operating systems code laid the
foundation for the Inferno Operating System released
as a product by Lucent Bell-Labs in 1997 [INF1]. The
Inferno venture was the only commercial embodiment
of Plan 9 and is currently maintained as a product by
Vita Nuova [VITA]. After updated releases in 2000
and 2002, Plan 9 was open-sourced under the OSI
[OSI] approved Lucent Public License [LPL] in 2003.

The Plan 9 project was started by Ken Thompson and
Rob Pike in 1985. Their intent was to explore potential
solutions to some of the shortcomings of UNIX in the
face of the widespread use of high-speed networks to
connect machines [Pike04]. In UNIX , networking was
an afterthought and UNIX clusters became little more
than a network of stand-alone systems. Plan 9 was
designed from first principles as a seamless distributed
system with integrated secure network resource
sharing. Applications and services were architected in
such a way as to allow for implicit distribution across a
cluster of systems. Configuring an environment to use
remote application components or services in place of

their local equivalent could be achieved with a few
simple command line instructions. For the most part,
application implementations operated independent of
the location of their actual resources.

Commercial operating systems haven’t changed much
in the 20 years since Plan 9 was conceived. Network
and distributed systems support is provided by a
patchwork of middle-ware, with an endless number of
packages supplying pieces of the puzzle. Matters are
complicated by the use of different complicated
protocols for individual services, and separate
implementations for kernel and application resources.
We are proposing leveraging Plan 9's principles in
modern commercial operating systems in an attempt to
provide a more coherent, unified approach to
distributed systems. The rest of this paper reviews
Plan 9's principles, discusses the details of the 9P
protocol, describes our Linux implementation, and
evaluates its performance compared to NFSv3.

Plan 9 Design Principles and Practice

Plan 9’s transparent distributed computing environment
was the result of three core design principles which
permeated all levels of the operating system and
application infrastructure:

1) develop a single set of simple, well-defined
interfaces to services

2) use a simple protocol to securely distribute the
interfaces across any network

3) provide a dynamic hierarchical structure to
organize these interfaces

In Plan 9, all system resources and interfaces are
represented as files. UNIX pioneered the concept of

treating devices as files, providing a simple, clear
interface to system hardware. In the 8th edition, this
methodology was taken further through the
introduction of the /proc synthetic file system to
manage user processes [Kill84]. Synthetic file systems
are comprised of elements with no physical storage,
that is to say the files represented are not present as
files on any disk. Instead, operations on the file
communicate directly with the sub-system or
application providing the service. Linux now contains
multiple synthetic file systems representing devices
(devfs), process control (procfs), and interfaces to
system services and data structures (sysfs).

Plan 9 took the file system metaphor further, using file
operations as the simple, well-defined interface to all
system and application services. The intuition behind
the design was based on the assumption that any
programmer knows how to interact with files. As such,
interfaces to all kernel subsystems from the networking
stack to the graphics frame buffer are represented
within synthetic file systems. This unified approach
dramatically simplifies access to all system services,
evident in Plan 9’s use of only 40 system calls
compared to Linux’s 300.

User-space applications and services export their own
synthetic file systems in much the same way as the
kernel interfaces. Common services such as domain
name service (DNS), authentication databases, and
window management are all provided as file systems.
End-user applications such as editors and e-mail
systems export file system interfaces as a means for
data exchange and control. The benefits and details of
this approach are covered in great detail in the existing
Plan 9 papers [PPTTW93].

9P [9man] represents the abstract interface used to
access resources under Plan 9. It is somewhat
analogous to the VFS layer in Linux [Love03]. In Plan
9, the same protocol operations are used to access both
local and remote resources, making the transition from
local resources to cluster resources to grid resources
completely transparent from an implementation
standpoint. Authentication is built into the protocol,
and was extended in its Inferno derivative Styx
[STYX] to include various forms of encryption and
digesting.

It is important to understand that all 9P operations can
be associated with different active semantics in
synthetic file systems. Traversal of a directory
hierarchy may allocate resources, or set locks. Reading
or writing data to a file interface may initiate actions on

the server, such as when a file acts as a control
interface. The dynamic nature of these semantics
makes caching dangerous and in-order synchronous
execution of file system operations a must.

The 9P protocol itself requires only a reliable, in-order
transport mechanism to function. It is commonly used
on top of TCP/IP [RFC793], but has also been used
over RUDP [RFC1151], PPP [RFC1331], and over raw
reliable mechanisms such as the PCI bus, serial port
connections, and shared memory. The IL [PrWi95]
protocol was designed specifically to provide 9P with a
reliable, in order transport on top of an IP stack without
the overhead of TCP.

In the fourth edition of Plan 9 released in 2002, 9P was
redesigned to address a number of shortcomings and
retitled 9P2000 [P903]. 9P2000 removed the file name
length limitation of 28 bytes, and sought to optimize
several operations involved in traversing file
hierarchies. It also introduced a negotiation phase
accommodating different versions of the protocol as
well as protocol parameter negotiation.

The final key design point is the organization of all
local and remote resources into a dynamic private
name space. A name space is a mapping of system and
application resources to names within a file system
hierarchy. Manipulation of the location of the elements
within a name space can be used to configure which
services to use, to interpose stackable layers onto
service interfaces, and to create restricted "sandbox"
environments.

Under Plan 9 and Inferno, the name space of each
process is unique and dynamic. A name space can be
manipulated through mount(1) and bind(1) commands.
Mount operations allow a client to add new interfaces
and resources to their name space. These resources can
be provided by the operating system, by a synthetic file
server, or from a remote server. Bind commands allow
reorganization of the existing name space, allowing
certain services to be "bound" to well-known locations.
Bind operations can also be used to substitute one
resource for another, for example by binding a remote
device over a local one. Binding can also be used to
create stackable layers, by interposing one interface
over another. Such interposable interfaces are
particularly useful for debugging and statistics
gathering as in the Plan 9 application iostat(4).

Processes inherit an initial name space from their
parent, but changes made to the client’s name space are
not typically reflected in the parent’s. This allows each
process to have a context-specific name space. The

system makes extensive use of this facility to provide
context-sensitive file interfaces. For example, in Plan
9, the file /dev/cons refers to the current process’
standard input and output file descriptors. In a similar
fashion /dev/user reports the user name, and /dev/pid
reports the current process id. This same facility is used
by the windowing system to provide information and
control over the process’ window.

Handcrafted name spaces can be used to create secure
sandboxes which give users access to very specific
system resources. This can be used in much the same
way as the UNIX chroot facility - except that the chroot
name spaces under Plan 9 can be completely synthetic -
with specific executables and interfaces "bound" into
place instead of copied to a sub-hierarchy.

The recent open-sourcing of Plan 9 and many of its
applications has created the opportunity to leverage
some of its unique concepts in other open source
operating systems. Alex Viro incorporated the private
name space concept into the 2.5 Linux kernel [Love03]
and Russ Cox has ported a number of Plan 9
applications and libraries (including libraries allowing
the creation of synthetic file server applications) to
Linux, BSD, and OSX [plan9ports]. This paper
describes the final missing piece, a native 9P protocol
for Linux.

The 9P2000 Protocol

As mentioned earlier, 9P2000 is the most recent
version of 9P, the Plan 9 distributed resource protocol.
It is a typical client/server protocol with
request/response semantics for each operation (or
transaction). 9P can be used over any reliable, in-order
transport. While the most common usage is over pipes
on the same machine or over TCP/IP to remote
machines, it has been used on a variety of different
mediums and encapsulated in several different
protocols. The Internet Link (IL) protocol [PrWi95]
was a lightweight encapsulation designed specifically
for 9P.

9P has 12 basic operations, all of which are initiated by
the clients. Each request (or T-message) is satisfied by
a single associated response (or R-message). In the
case of an error, a special response (R-error) is returned
to the client containing a variable length string error
message. It is important to note that there are no special
operations for directories or links as in VFS [Love03]
because these elements are just treated as ordinary
files. The operations summarized in the following table
fall into three categories: session management, file
operations, and meta-data operations.

class op-code description
session version parameter negotiation

auth security authentication
attach establish a connection
flush abort a request
error return an error

file walk lookup pathname
open access a file
create create & access a file
read transfer data from a file
write transfer data to a file
clunk release a file

metadata stat read file attributes
wstat modify file attributes

Table 1: 9P2000 Operations

9P is best understood by seeing what messages are
transmitted for some standard file system operations.
One can do this by using the UNIX 9P server, u9fs, and
turning debug mode on. The debug output (which goes
to /tmp/u9fs.log by default) displays a human-readable
transaction log. What follows in italics is an example
session of a Plan 9 client contacting a Unix 9P2000
server and writing to a new file (/tmp/usr/testfile).
Explanations of the various operations follow each
request/response pair. Messages marked with () are→
from the client to the server, and () represent the←
responses. Note that you will see slightly different
transaction sequences from a UNIX client due to the
nature of the mapping of VFS operations.

 → Tversion tag -1 msize 8216 version ’9P2000’

 ← Rversion tag -1 msize 8216 version ’9P2000’

The version operation initiates the protocol session.
The tag accompanies all protocol messages and is used
to multiplex operations on a single connection. The
client selects a unique tag for each outbound operation.
The tag for version operations, however, is always set
to -1. The next field, msize negotiates the maximum
packet size with the server including any headers - the
server may respond with any number less than or equal
to the requested size. The version field is a variable
length string representing the requested version of the
protocol to use. The server may respond with an earlier
version, or with an error if there is no earlier version
that it can support.

 → Tauth tag 5 afid 291 uname ’bootes’ aname ’’

 ← Rerror tag 5 ename ’u9fs authnone: no
authentication required’

The auth operation is used to negotiate authentication
information. The afid represents a special
authentication handle, the uname (bootes) is the user
name attempting the connection and the aname, (which
in this case is blank), is the mount point the user is
trying to authenticate against. A blank aname specifies
that the root of the file server’s hierarchy is to be
mounted. In this case, the Plan 9 client is attempting to
connect to a Unix server which does not require
authentication, so instead of returning an Rauth
operation validating the authentication, the server
returns Rerror, and in a variable length strength in the
field ename, the server returns the reason for the error.

 → Tattach tag 5 fid 291 afid -1 uname ’bootes’ aname
’’

 ← Rattach tag 5 qid (0902 1097266316 d)

The attach operation is used to establish a connection
with the file server. A fid unique identifier is selected
by the client to be used as a file handle. A Fid is used
as the point of reference for almost all 9P operations.
They operate much like a UNIX file descriptor, except
that they can reference a position in a file hierarchy as
well as referencing open files. In this case, the fid
returned references the root of the server’s hierarchy.
The afid is an authentication handle; in this case it is
set to -1 because no authentication was used. Uname
and aname serve the same purposes as described before
in the auth operation.

The response to the attach includes a qid, which is a
tuple representing the server’s unique identifier for the
file. The first number in the tuple represents the
qid.path, which can be thought of as an inode number
representing the file. Each file or directory in a file
server’s hierarchy has exactly one qid.path. The second
number represents the qid.version, which is used to
provide a revision for the file in question. Synthetic
files by convention have a qid.version of 0.
Qid.version numbers from UNIX file servers are
typically a hash of the file’s modification time. The
final field, qid.type, encodes the type of the file. Valid
types include directories, append only files (logs),
exclusive files (only one client can open at a time),
mount points (pipes), authentication files, and normal
files.

 → Twalk tag 5 fid 291 newfid 308 nwname 0

 → Rwalk tag 5 nwqid 0

Walk operations serve two purposes: directory traversal
and fid cloning. This walk demonstrates the latter.
Before any operation can proceed, the root file handle

(or fid) must be cloned. A clone operation can be
thought of as a dup, in that it makes a copy of an
existing file handle - both of which initially point to the
same location in the file hierarchy. The cloned file
handle can then be used to traverse the file tree or to
perform various operations. In this case the root fid
(291) is cloned to a new fid (308). Note that the client
always selects the fid numbers. The last field in the
request transaction, nwname, is used for traversal
operations. In this case, no traversal was requested, so
it is set to 0. The nwqid field in the response is for
traversals and is discussed in the next segment.

 → Twalk tag 5 fid 308 newfid 296 nwname 2 0:tmp
1:usr

 ← Rwalk tag 5 nwqid 2 0:(0034901 1093689656 d) 1:
(0074cdd0 1096825323 d)

Here we see a traversal request walk operation. All
traversals also contain a clone operation. The fid and
newfid fields serve the same purpose as described
previously. Nwname specifies the number of path
segments which are attempting to be traversed (in this
case 2). The rest of the operands are numbered variable
length strings representing the path segments - in this
case, traversing to /tmp/usr. The nwqid in the response
returns the qids for each segment traversed, and should
have a qid for each requested path segment in the
request. Note that in this case there are two pathname
components: the path name is walked at the server, not
the client, which is a real performance improvement
over systems such as NFS which walk pathnames one
component at a time.

 → Tcreate tag 5 fid 296 perm --rw-rw-rw- mode 1
name ’testfile’

 ← Rcreate tag 5 qid (074cdd4 1097874034) iounit 0

The create operation both creates a new file and opens
it. The open operation has similar arguments, but
doesn’t include the name or perm fields. The name
field is a variable length string representing the file
name to be created. The perm field specifies the user,
group, and other permissions on the file (read, write,
and execute). These are similar to the core permissions
on a unix system. The mode bit represents the mode
with which you want to open the resulting file (read,
write, and/or execute). The response contains the qid of
the newly created (or opened) file and the iounit, which
specifies the maximum number of bytes which may be
read or written before the transaction is split into
multiple 9P messages. In this case, a response of 0
indicates that the file’s maximum message size

matches the session’s maximum message size (as
specified in the version operation).

 → Tclunk tag 5 fid 308

 ← Rclunk tag 5

The clunk operation is sent to release a file handle. In
this case it is releasing the cloned handle to the root of
the tree. You’ll often see transient fids used for
traversals and then discarded. This is even more
extreme in the UNIX clients as they only traverse a
single path segment at a time, generating a new fid for
each path segment. These transient fids are a likely
candidate for optimization, and may be vestigial from
the older 9P specification which had a separate clone
operation and didn’t allow multiple segment walks.

 → Twrite tag 5 fid 296 offset 0 count 8 ’test’

 ← Rwrite tag 5 count 8

We finally come to an actual I/O operation, a write
operation that writes the string ’test’ into the new file.
Write and read operands are very similar and
straightforward. The offset field specifies the offset into
the file to perform the operation. There is no separate
seek operation in 9P. The count represents the number
of bytes to read or write, and the variable length string
(’test’) is the value to be written. The response count
reports the number of bytes successfully written. In a
read operation the response would also contain a
variable length string of count size with the data read.

 → Tclunk tag 5 fid 296

 ← Rclunk tag 5

This final clunk releases the fid handle to the file --
approximating a close operation. You’ll note that the
only fid remaining open is the root fid which remains
until the file system is unmounted. Several operations
were not covered in this transaction summary. Flush is
almost never used by clients in normal operation, and
is typically used to recover from error cases. The stat
operation, similar to its UNIX counterpart, is used to
retrieve file metadata. Twstat is used to set file
metadata, and is also used to rename files (file names
are considered part of the metadata).

9P2000 Unix Extensions

Many modern UNIX systems, including Linux use a
virtual file system (VFS) layer as a basic level of
abstraction for accessing underlying implementations.
Implementing 9P2000 under Linux is a matter of
mapping VFS operations to their associated 9P
operations. The problem, however, is that 9P2000 was

designed for a non-UNIX system so there are several
fundamental differences in the functional semantics
provided by 9P.

Under Plan 9, user names as well as groups are
represented by strings, while on Unix they are
represented by unique numbers. This is complicated by
Linux making it exceedingly difficult to map these
numeric identifiers to their string values in the kernel.
Many of the available UNIX network file systems avoid
this issue and simply use numeric identifiers over the
wire, hoping they map to the remote system. NFSv4
[NFS4] has provisions for sending string group and
user info over the wire and then contacting a user-space
daemon which attempts to provide a valid mapping.

We use two different name mapping approaches based
on server system type. When contacting a 9P server on
another UNIX system we use numeric identifiers. When
contacting a Plan 9 file server we map all numeric ids
to the numeric id of the mounting user. While this
yields less than accurate uid/gid information in
directory listings, permissions checking (which is done
on the remote server) is still valid. A potential future
piece of work would be to provide a user-space
daemon similar to NFSv4 to provide uid/gid mapping
services or perhaps somehow leverage the existing
NFSv4 service.

One of the unique aspects of the Plan 9 name space is
that it is dynamic. Users are able to bind files and
directories over each other in stackable layers similar
to union file systems. This aspect of Plan 9 name
spaces has obviated the need for symbolic or hard
links. Symlinks on a remote UNIX file server will be
traversed transparently as part of a walk - there is no
native ability within Plan 9 to create symlinks. This
breaks many assumptions for Linux file-systems and
many existing applications (for example the kernel
build creates a symlink in the include directory as part
of the make process).

To preserve compatibility with these existing
applications we implemented a transparent extension to
the file system semantics which doesn’t effect the
protocol syntax. Files requiring this extension have
their filenames prefixed with a marker character, ’/’,
which is normally illegal in file system operations. A
string following the ’/’ provides details of the type of
extension and is followed by a numeric mode
extension. For symlinks and hard links the file’s
content contains the link information. These extensions
are essentially ignored by the Plan 9 file server, but
interpreted correctly by UNIX clients and servers.

The same extension can be used to provide support for
additional mode bits and other file types not provided
under Plan 9. The extension codes are documented in
the table below:

extension code
symbolic link /symlx

hard link /linkx
character device /charx

block device /blckx
pipe /pipex

extra mode /modex
mode code(x)
none 0

set-user-id 1
sticky bit 2

directory exec (X) 4
Table 2: 9P2000.u Extension Codes

Since these are all extensions to the 9P2000 protocol,
they must be negotiated during the version stage of
establishing the connection. The clients register interest
in the extension by appending a .u to the version string
(e.g. 9P2000.u). If the server is capable of providing
the UNIX extensions, it will respond with a 9P2000.u in
the response message. If the server does not wish (or
cannot) provide the UNIX extensions, it will respond
without the .u (e.g. 9P2000).

An operation which does not currently have any
support in the 9P2000 protocol or UNIX extensions is
ioctl. Fortunately, in the Linux world, ioctl is being
deprecated in favor of sysfs-based mechanisms. For
interfaces still requiring ioctl operations (such as
sockets), gateway synthetic file server applications can
map ioctl functionality to synthetic control files.

Details of the Linux Implementation

For the most part, 9P2000 can be directly mapped to
the Linux VFS interface. There are several semantic
differences beyond the syntactic differences mentioned
in the above section which are worth noting.

One difference is the model by which a file system is
mounted. On UNIX systems this is done either at boot
time, by the super user, or through an automounter
(which must be configured for particular resources by
the super user). Additionally, once a file system is
mounted it is visible (and accessible) to all users. By
contrast, under Plan 9 file systems are mounted by
individual users into their private name space
environment. The connection to the file server is
authenticated by the credentials of the individual user
at mount time, and the file system is mounted in the

user’s private name space - so it is not directly visible
to any other user. Even diskless terminals work this
way under Plan 9 - a user must first log in before the
terminal mounts its root file system from the file
server.

The Linux 9P2000 driver can accommodate both
systems. It can mount the file server as root (or some
other special user) into the global Linux name space or
it can operate with the user initiating the mount and it
being authenticated against his or her user ID. The two
complications are that, by default, Linux has a global
name space for all users, and ordinary users don’t
typically have permission to mount arbitrary systems
on arbitrary mount points.

This can be solved by having a special set-uid version
of mount which allows certain users (or users in a
particular group) to mount from certain systems
matching a list of regular expressions to particular
mount points matching a regular expressions. A special
version of mount is required in order to do DNS
resolution of the server names as NFS support for DNS
resolution is a special case implementation in the
standard mount application. Users can spawn off a
private name space by using a simple wrapper utility
(as described in the Application section).

A third alternative, which is currently the most secure
model, is for the user to ssh to the remote file server
and start his own private u9fs instance which uses the
ssh connection as a transport. On the client system a
set-uid mount application can attach to the i/o stream
and a wrapper can be used to establish a private name
space if desired. This still requires a properly
configured set-uid mount application on the client and
is only useful after the client system is fully booted. In
fact, this is the way that Plan 9 users commonly mount
UNIX file systems using u9fs when they don’t have root
permissions on the file server.

File creation under Plan 9 is atomic. That is to say the
file is created and opened in a single 9P operation.
Under VFS, creation semantics are entirely separate
from open, and therefore not atomic. The Linux
9P2000 implementation seeks to preserve some of the
atomicity of the original Plan 9 semantics by caching
the fid in the inode structure - however, this does not
guarantee the same atomic semantic.

Cache policy was a major concern when implementing
the 9P2000 driver. Linux file systems routinely use two
caches: the dcache provides caching of directory
lookup information effectively caching inodes and
metadata so they don’t have to be re-read from the

disk, while the page cache provides a data cache. Both
create problems as 9P2000 is intended to be a non-
cached synchronous protocol since it does more than
just provide a transport to share files.

The dcache creates problems because it caches inodes,
effectively caching both metadata and file/directory
lookup. The problem is that synthetic file system
semantics may be attached to metadata operations
(stat/twstat) and file system hierarchy movement
(walk). This case is particularly important to consider
due to the dynamic nature of synthetic file systems. For
example, since a file server assumes it will see walks
every time a directory is traversed, it could use such
traversal as a locking mechanism. If the results of the
walk is cached and reused, it would violate the lock
semantics. The other problem with the dcache is that
fids stay open (attached to the inode in the dcache)
which would otherwise be clunked. Clunks are another
operation which commonly have associated semantics
within synthetic file systems (such as unlocking).

One solution is to always report dcache entries as
invalid, forcing the clunk of their associated fids and
requiring a rewalk from the mount-point to their
location. This is unfortunate as the directory cache
provides a nice performance improvement, particularly
in cases where a deep directory structure is being
repeatedly traversed. An alternative solution lies in the
version field of Plan 9 qids. By convention, static file
versions start at 1 and synthetic files always have
version 0. So the dcache solution is to automatically
invalidate any dcache entry with a qid.version equal to
0, otherwise validate the dentry in a normal fashion via
a stat transaction and comparing the version numbers.

The same basic policy can be applied to caching file
system data in the page cache. Since synthetic file
systems typically do not have version or even
modification date information, there is no way to
validate the cached inode, so you must assume it is
invalid. Typically it is not desirable to cache synthetic
file systems anyways, it doesn’t make sense to think
about caching the dynamic data in the /proc file
system.

Loose consistency models present another particularly
difficult problem. For example, by default NFS (v2 &
v3) employs a timeout based invalidation strategy for
its page cache and also implements a time-delayed
write back in an attempt to coalesce operations. This
results in admirable write performance optimization
but undermines any synchronous operation of the
protocol. This could be particularly damaging when

you are using writes to the file system to control a
remote service or manage locks.

Because of the drastically different semantics, dcache,
page cache, and delayed write-back caching have been
removed from the Linux 9P2000 driver. Plan 9 itself
uses a stackable caching file system to provide a
similar level of cache optimization. Unlike the standard
Linux page cache, the Plan 9 cache file system can
even use a disk as a backing store. This is particularly
effective for workstations that have a disk but get their
root file systems from a server. David Howell’s
CacheFS [CFS] shows promise as providing a similar
stackable service for Linux. Ultimately, it is our intent
to provide some level of cache for 9P via integration
with a stackable cache system while preserving correct
synthetic file system semantics.

Applications

9P2000 support provides a nice alternative to NFS for
distributing static files. It can be configured in such a
way that users can export and mount their own file
system resources. Its synchronous mode of operation
and optional caching make it ideal for situations where
the cache models and delayed writes of other file
systems cause problems. Many utilities, such as CVS
and various e-mail servers, discourage the use of NFS
repositories due to concerns with data corruption
resulting from bad cache behavior and lack of
transaction semantics.

However, as mentioned several times before -
distributed file service is not the only benefit of
9P2000. It can be used to share networking stacks and
block and character devices between members of a
9P2000 cluster. It can be used to manipulate Linux
synthetic file systems, such as /proc and /sys providing
distributed control and management. It also can be used
as an infrastructure to implement distributed
applications.

A key to effective use of 9P2000 is the recently added
private name space extensions in the 2.4.19 and later
kernels. In order to use these, a special flag
(CLONE_NEWNS) needs to set when the clone system
call is used to create a child process. When the flag is
used, Linux will create a copy of the parents name
space instead of sharing the same copy. Modifications
to the child’s name space will not be visible to the
parent and vice-versa. This can be used by normal
users by writing a simple wrapper application for the
standard shell which creates a new name space each
time a new shell is invoked. An example wrapper
application is included in the v9fs distribution.

Another possible use of the 9P2000 Linux support is
with Russ Cox’s UNIX ports of the Plan 9 applications.
Several of the applications, including ACME [Pike94]
and plumbing [Pike00], export synthetic file system
interfaces to application structures. The plan9ports
package includes wrapper applications which can be
used with synthetic file systems without mounting
them, but, having a native 9P file system, make access
and manipulation much more easy and intuitive.

Similar types of synthetic file systems can now be
written for Linux applications. An example would be a
port of the task bag file system. The task bag file
system is a synthetic file system that presents users
with three directories: questions, working, and answers.
Programs needing work done create exclusive-open
files in the questions directory and write the questions
to them, one question to each file. Once the file is
closed, workers can pick up work from the questions
directory (by opening a file in that directory). Files that
are opened a second time for writing (i.e. by a worker)
will disappear from the questions directory and appear
in the working directory. If the file is closed without a
write, it means the worker died or gave up; it reappears
in the questions directory. When the file is closed, if
there was data written to it, the file name will now
appear in the answers directory.

This file system models an earlier system built using
SunRPC. In that system, programs that wished to use
the taskbag need to be built with SunRPC. In the
taskbag file system, it is possible to use shell scripts to
create, acquire, and get the answers for tasks. Status
can be determined with ’ls’ and ’cat’. The system
works transparently over a Grid [9grid]. All in all, the
task bag file system is far more capable than the
SunRPC taskbag system that it replaces.

Private name spaces have also been integrated into the
Clustermatic software suite [Clus]. Users can specify a
set of mount points that are to be activated when their
process or its children are run on a cluster node. When
the process is migrated to the cluster node, the mount
points are set up by the kernel before the process starts
and are removed by the kernel after the process and
any children exit. Note that this is not really an
automounter, though it behaves in a similar way. The
mount points are private and they are part of the
context of the process, not defined a file in /etc. We
have tested this system on the 1024-node Pink cluster
at LANL. 1024 mounts take 20 seconds to set up, but
once the system is running it is faster than NFS and far
more stable.

Performance

As mentioned earlier, 9P is a unifying protocol - it
combines methods for name space organization,
resource sharing, distributed applications, and file
service. We focus our performance characterization on
the distributed file service since it has easily identified
comparison points and a host of generally available
benchmarks. We chose to compare our implementation
to NFS, because it seems to be the most widely used
and understood distributed file system protocol.

Our test environment is a cluster of identically
configured dual-processor 866 MHz Pentium III
servers, each configured with 256 MB of memory, a
36GB IBM DDYS-T36950N SCSI drive formated with
an ext2 file system, an Alteon 1 GB Ethernet card, and
running Linux 2.6.8. We will show evaluations with
caches disabled within 9P2000 and will test against
NFSv3 (both tcp and udp). We compared the protocols
with 8k and 32k buffer sizes.

We used two evaluation benchmarks to characterize the
performance of our 9P2000 driver and compare it to
NFS. The first is the Bonnie [Berry90] suite of file
system benchmarks which test overall throughput
through operations on a single large file. The second is
the PostMark [Katch97] benchmark from Network
Appliance; it performs a large number of transactions
with smaller block operations and many files.

The Bonnie benchmark performs a series of tests on a
single file of a specified size. The default is a 100 MB
file, but we followed the instruction’s suggested
guideline of twice the size of available DRAM
(512MB). This limits the effectiveness of cache
operations and exposes the performance of the
underlying file operations. It performs sequential writes
and reads of the file, both a character at a time and in
blocks. It also performs a read, modify, write sequence
(rewrite), and random seeks followed by reads and
writes of small chunks of data.

Illustration 1: Bonnie Results (KB/sec)

Write Char Write Block Rewrite Read Char Read Block Seek

10

100

1000

10000

100000

NFS 8k UDP

NFS 8k TCP
9P 8k

NFS 32k UDP

NFS 32k TCP

9P 32k
Disk

The results show comparable or better performance for
all operations except write operations with small block
sizes. On write benchmarks, 9P2000 does poorly due to
the fact that async NFS delays write-back to coalesce
transactions and does a better job of pipelining write
operations. The effect of the operation coalescing is
somewhat mitigated with larger block sizes, but the
pipelining of write requests still gives NFS a distinct
advantage.

For other operations 9P2000 shows slight advantages
over NFS due to the lower complexity of the protocol
and the fact this it lets the server handle metadata
update instead of issuing separate transactions. 9P’s
lower complexity can be seen in its implementation
with only 12 operations and just under 3500 lines of
code, while NFS has 17 operations and is implemented
in 9357 lines of code (source code counts based on
David Wheeler’s SLOCCount).

With the larger working set there is significantly less
memory for caches, reducing the effectiveness of
NFS’s loose consistency model. Runs which had
smaller footprints showed dramatic advantages for
NFS, particularly for read block operations. Caches
clearly have advantages and need to be considered for
distributing static file systems.

Analysis of protocol traffic during the benchmark
(using NFSDump [LISA03] and 9P server logs) shows
approximately 50% fewer operations for NFS with 32k
buffer sizes. This dramatic drop in the number of
operations (primarily read and write operations) shows
the effectiveness of caches for operation coalescing (in
the write-char and read-char portions of the
benchmark). With 8k buffer sizes, NFS retains an
advantage in fewer write operations, but has roughly
the same number of read operations as 9P. The fact that
this huge reduction in the number of operations over
the wire doesn’t have a more dramatic effect on the
performance seems to indicate the overhead added by
NFS coherence and the page cache are detrimental to
performance of workloads with poor locality.

PostMark is a benchmark developed under contract to
Network Appliance. Its intent is to measure the
performance of a system used to support a busy email
service or the execution of a large number of CGI
scripts processing forms. It creates the specified
number of files randomly distributing the range of file
sizes: it is typically used with very large numbers of
relatively small files. It then runs transactions on these
files, randomly creating and deleting them or reading
and appending to them, and then it deletes the files. We

ran our PostMark configuration with 500 files and
50000 transactions. This seemed sufficient to
differentiate between the file systems and had a
tractable run-time.

PostMark paints a very different picture than the
Bonnie benchmark, since the files and operations are
much smaller - low latency handling of requests is
much more important than overall throughput. 9P2000
demonstrates approximately double the performance of
TCP and UDP NFSv3 (which effectively scored the
same for the PostMark benchmark). Analysis of the
protocol traffic shows 9P2000 with half the operations
of NFS for 8k and 32k buffer sizes. NFS still shows an
advantage on the number of read and write operations
(in fact never sending a read operation over the wire
due to the effectiveness of the page cache). However,
NFS sends more than twice as many lookup operations
and sends access messages almost every time it touches
the files. The fact that so many synchronous operations
are required to access a file really inhibits performance
for NFS. By contrast, 9P does all permissions checking
on the server and requires only a single operation to
create and open a file.

Related Work

9P is nominally just a remote file system. However,
due to the unique way in which it is used to distribute
not just files but other system and application

Illustration 3: PostMark Bandwidth (KB/sec)

Read Write

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

TCPNFS8k

UDPNFS8k

9P8K

TCPNFS32k

UDPNFS32k

9P32K

Illustration 2: PostMark Operations (op/sec)

Create Read Append Delete

0

25

50

75

100

125

150

175

200

225

250

TCPNFS8k

UDPNFS8k

9P8K

TCPNFS32k

UDPNFS32k

9P32K

resources, it has advantages over other file system
protocols for certain applications.

The Linux kernel supports several different network
file systems. There is experimental support for the
Andrew File System [HOW88], Coda [SATY90],
Microsoft SMB and Common Internet File System
[CIFS], and Netware’s NCP [Majo94]. The most
commonly used is the NFS protocol [Sun89]. Linux
supports NFSv3, experimental support for NFSv4
[NFS4] and NFS over TCP. All of these are targeted
purely for distributing static files and don’t implement
the correct cache behavior or transaction semantics to
support more complicated distribution of devices,
system resources, or an easy mechanism for
applications to export synthetic file systems. Most of
these protocols are tied to either TCP/IP or UDP/IP.
While some support other transports, such as RDMA
interfaces, none of these variants are in common use
today.

The Linux network block device [NBD00], and its
cousin the Ethernet block device [EBD02], and iSCSI
[RFC3720] provide remote access to block and SCSI
drivers. However, they provide no solution for various
other system elements and don’t support an
organizational name space or a mechanism for coherent
multi-user access.

As an application interface, 9P has many
contemporaries. Remote Procedure Call (RPC)
[Birr94] provides the closest contemporary providing
both application level servers and a foundation layer
for NFS -- however, it doesn’t provide any of the
semantics necessary to structure a functional name
space.

Another interesting area to evaluate 9P is within cluster
resource distribution and management. 9P provides a
single protocol which can enable sharing of devices,
file systems, and compute resources while also
providing a convenience name space to organize these
resources. While many other infrastructures attempt to
provide these facilities [Fos96][Litz88], none provide
the transparent ubiquity of Plan 9’s model or an unified
solution to resource distribution and management in a
single protocol.

Future Work

The largest missing piece from the Linux 9P2000
implementation is security. There is some rudimentary
security provided by u9fs - either by using a rhosts file
to specify what hosts are allowed to connect (similar to
a stripped down exports file), or through a simple

insecure challenge-response password system. Those
concerned with security that want to use the existing
implementation must tunnel through an ssh system
which gives both user-authentication and data security.

However, Plan 9 has a rich set of security mechanisms
which neither the Linux client driver or server use. One
piece of future work would be to integrate these
security mechanisms, plus the ability to encrypt and
digest messages into the Linux drivers. Alternatively,
or perhaps additionally, one could integrate Linux-style
authentication schemes such as Kerberos and/or LDAP.

Another piece of future work would be to enable and
tune 9P2000 to run on other transports beyond TCP/IP
and pipes. Particularly interesting would be a port of
9P2000 to an RDMA [Mogu04] interface without an IP
encapsulation. There is already an effort underway to
port NFS to RDMA [Call02] and implement special
RDMA file systems [Talp03].

NFS has the advantage of kernel-mode server. A port
of the u9fs server application into the kernel with best
efforts towards a zero-copy infrastructure should
significantly increase the performance of the 9P2000
Linux implementation.

With the 9P2000 infrastructure now in place for Linux,
a whole host of applications and synthetic file system
gateways can be developed to provide Plan 9-style
services and resource sharing. Gateway applications
and drivers need to be developed for the IP stack,
graphics systems, standard I/O console and other
resources not currently exported to the Linux file
system. Proxy drivers could be written to gateway
character, block, and network driver operations across
9P2000 to devices on remote servers. Helper
applications, like 9fs(1) and cpu(1) in Plan 9, need to
be ported to Linux to allow easy access and use of the
cluster resources made available with 9P2000. Finally,
existing Plan 9 application ports need to be updated to
use the native 9P file system support.

Conclusions

Plan 9 was developed for distributed systems with
three design principles in mind: represent all system
and application resources as files, distribute those files
using a simple protocol, and organize these distributed
resources in a dynamic per-process private name space.
With support for private name spaces and the
implementation of 9P2000 now in the Linux 2.6 kernel,
we can explore Plan 9 inspired distributed resource
sharing and infrastructure within a commercial
operating system.

The PostMark benchmark shows that 9P2000
performance for typical real-world workloads is
superior to NFS, while the Bonnie benchmark shows
NFS gets a significant benefit from time-delay write-
back and loose read consistency on large static files.
While performance for static files isn’t a prime
motivation for the 9P2000 protocol, we are confident
that a loose consistency cache-layer similar to NFS
could be implemented which would yield similar, if not
better performance results. The performance results
suggest that even without this cache layer, 9P2000 is a
superior protocol for performing synchronous
distributed file operations and demonstrates better
performance for smaller files.

However, performance isn’t the main advantage of
9P2000. The important thing to understand is the new
paradigm of unified system resource sharing and
distributed application design that it enables. The
qualitative advantages of such a system have been
documented in both the Plan 9 and Inferno technical
papers. They can be seen, to a limited extent, in the
synthetic file systems currently available under Linux
(e.g. /proc and /sys). It is our hope that the availability
of the paradigm in a widely available commercial
operating system such as Linux will inspire more
developers to experiment with this approach to
distributed computing. The source code is available
from http://v9fs.sourceforge.net under the GPL license.

Acknowledgments

The 2.6 port of V9FS and performance analysis was
supported in part by the Defense Advance Research
Projects Agency under Contract No. NBCH30390004.
The original V9FS research work by Ron Minnich was
supported by DARPA Contract #F30602-96-C-0297.

Research conducted in the Cluster Research Lab at the
Los Alamos National Labs was funded in part by the
Mathematical Information and Computer Sciences
(MICS) Program of the DOE Office of Science and the
Los Alamos Computer Science Institute (ASCI
Institutes). Los Alamos National Laboratory is
operated by the University of California for the
National Nuclear Security Administration of the United
States Department of Energy under contract W-7405-
ENG-36. Los Alamos, NM 87545 LANL LA-UR-04-
7478.

References

[9FAQ] “Plan 9 from Bell Labs FAQ”,
http://ask.km.ru/3p/plan9faq.html.

[9grid] A. Mirtchovski, R. Simmonds, R. Minnich,
“Plan 9 -- an Integrated Approach to Grid Computing”
International Parallel and Distributed Processing
Symposium April 2004.

[9man] Plan 9 Programmer's Manual, Volume 1,
AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[Berry90] M. Berry, “Bonnie Source Code”
http://www.textuality.com/bonnie/intro.html ,1990.

[Birr94] A. D. Birrell, B. J. Nelson, “Implementing
Remote Procedure Calls”, Proceedings of the ACM
Symposium on Operating System Principles 1984.

[Call02] B. Callaghan, “NFS over RDMA”
Proceedings of FAST 2002.

[CFS] David Howell “CacheFS”
http://www.redhat.com/archives/linux-cachefs ,October
2004.

[CIFS] C. Hertel, “Implementing CIFS: The Common
Internet File System”, Prentice Hall PTR September
2003.

[Clus] “Clustermatic: A complete cluster solution”,
http://www.clustermatic.org

[EBD02] E. Van Hensbergen, F. Rawson, “Revisiting
Link-Layer Storage Networking”, IBM Technical
Report #RC22602 2002.

[Fos96] I. Foster, C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit” The
International Journal of Supercomputer Applications
and High Performance Computing, 1996.

[HOW88] J.H. Howard, “An Overview of the Andrew
FIle System”, Proceedings of the USENIX Winter
Technical Conference, Feb 1988.

[INF1] S.M. Dorward, R. Pike, D. L. Presotto, D. M.
Ritchie, H. Trickey, and P. Winterbottom, “The Inferno
Operating System”, Bell Labs Technical Journal Vol.
2, No. 1, Winter 1997.

[Katch97] J. Katcher, “PostMark: a New Filesystem
Benchmark.” Technical Report TR3022, Network
Appliance 1997.

[Kill84] Tom Killian, “Processes as Files”, USENIX
Summer Conf. Proc. , Salt Lake City June, 1984.

[LISA03] D. Ellard and M. Seltzer, “New NFS Tracing
Tools and Techniques for System Analysis” Large
Installation System Administration Conference, 2003.

[Litz88] M. Litzkow, M. Livny, M. Mutka, “Condor: A
Hunter of Idle Workstations” Proceedings of the 8th

International Conference of Distributed Computing
Systems", 1988.

[Love03] Robert Love, “Linux Kernel Development”,
Sams Publishing, 800 E. 96th Street, Indianapolis,
Indiana 46240 August 2003.

[LPL] “Lucent Public License Version 1.02”,
http://cm.bell-labs.com/plan9dist/license.html

[Majo94] D. Major, G. Minshall, and K. Powell, “An
Overview of the NetWare Operating System”,
Proceedings of the 1994 WInter USENIX Pages 355-
72, January 1994.

[Mogu04] J. Mogul, “TCP offload is a dumb idea whos
time has come” Proceedings of HotOS IX 2004.

[NBD00] P. T. Breuer, A. Marin Lopez, and A. G.
Ares, “The Network Block Device”, Linux Journal
Issue 73 May 2000.

[NFS4] B. Pawlowski, S. Shepler, C. Beame, B.
Callaghan, et. al, “The NFS Version 4 Protocol”
Proceedings on the 2nd international system
administration and networking conference, 2000.

[OSI] “Open Source Initiative”,
http://www.opensource.org"

[P903] “Plan 9 From Bell Labs Fourth Release Notes”,
http://plan9.bell-labs.com/sys/doc/release4.html , June
2003.

[Pike00]Rob Pike, “Plumbing and Other Utilities”,
Plan 9 Progreammer's Manual Vol 2. pp 219-234.

[Pike04]R. Pike, “Rob Pike Reponds” Slashdot
Interview October 18, 2004.

[Pike90]R. Pike, D. Presotto, K. Thompson, H.
Trickey, “Plan 9 from Bell Labs”, UKUUG Proc. of
the Summer 1990 Conf., London, England, 1990.

[Pike91]Rob Pike, “8½, the Plan 9 Window System”,
USENIX Summer Conf. Proc., Nashville, June, 1991,
pp. 257-265

[Pike94]Rob Pike, “Acme: A User Interface for
Programmers”, USENIX Proc. of the Winter 1994
Conf., San Francisco, CA.

[plan9port] Russ Cox, “Plan 9 from User Space”,
http://swtch.com/plan9port

[PPTTW93] Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey, and Phil Winterbottom, “The Use of
Name Spaces in Plan 9”, Op. Sys. Rev., Vol. 27, No. 2,
April 1993, pp. 72-76.

[PrWi95] Dave Presotto and Phil Winterbottom, “The
IL Protocol”, Plan 9 Programmer's Manual, Volume 2,
AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[RFC793] RFC793, Transmission Control Protocol,
DARPA Internet Program Protocol Specification,
September 1981.

[RFC1151] RFC1151, Reliable User Datagram
Protocol (version 2), Internet Engineering Task Force,
April 1990.

[RFC1331] RFC1331, The Point-to-Point Protocol,
Internet Engineering Task Force, May 1992.

[RFC3720] RFC3720, Internet Small Computer
Systems Interface, Internet Engineering Task Force,
April 2004.

[SATY90] M. Satyanarayanan, “Coda: A Highly
Available File System for a Distributed Workstation
Environment” IEEE Transactions on Computers, 1990.

[Sun89] Sun Microsystems, “NFS: Network file system
protocol specification”, RFC 1094, Network
Information Center, SRI International, March, 1989.

[Talp03] T. Talpey, “The Direct Access File System”
Proceedings of FAST 2003.

[thomo95] Ken Thompson, “The Plan 9 File Server”,
Plan 9 Programmer's Manual, Volume 2, AT&T Bell
Laboratories, Murray Hill, NJ, 1995.

[VITA] “Vita Nuova Home Page”,
http://www.vitanuova.com

[v9fs] Ron Minnich, “Plan 9-style File System for
Linux/BSD”, http://sourceforge.net/projects/v9fs

