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Unix

• Simple open/read/write/close with streams 
of bytes

• Resources are named via a visible path

• This is such an advanced concept that NT 
still does not do it (try ls \devices 
sometime)

• It was also extremely controversial



Two guys and a computer
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Unix kernel system calls
• Pathname

– Chdir, chmod, chown, 
creat,exec,link,mknod,mount,open,stat,umount,unlink

• FD

– dup,fstat,gtty,stty,seek, read,write,open,close

• Void param or output-only

– fork,getgid,getpid,getuid,pipe, wait, time, times

• Pid

– Kill, signal

• Other 

– Break, csw, nice, profil,ptrace, setgid, setuid, stime



So in Unix, 
“Everything is a file”

• Or so we thought

• As it happened, the model broke down fairly 
quickly

• In our case, it happened with this:

• (no picture)

• The DEC DAC



The DEC DAC problem

• Problem: you are reading from the DAC 
(/dev/dac)

• OK, it's a file

• But you want to let a process read from 
something else (i.e. Filter) and then ... open 
a file ... oh wait ... IPC has no name

• Recall that kill() was one IPC mechanism, 
pipes another, both anonymous



We didn't feel so smug at that 
point

• The “everything is a file” model had broken 
down fairly quickly

• And for a fairly important use
– Take a file, apply filter, present to users as file

– Can't do it!

• And then things got worse ...



Oh, heck

• Did I say everything was named? 

• I lied

• Un-named things:
– Processes

– File descriptors

• Note that these got fixed later

• What didn't get fixed



When things started to break

• Unix model had common access method 
different types of resources

• e.g., “/etc/passwd” and “/dev/dk0” are both 
path names

• But get to different kinds of things

• So: one interface, multiple resources

• Late 1970s, Unix started to break

• Networking was the cause



Networking added to Unix

• Initially, people tried stuff like:
– “/dev/tcp/harv” (RAND RFC 618)

– One interface, different resource

– Failed, for various reasons

– Unix had no way (architecturally) at the time to 
switch out to protocol streams from file names

• So binary names for sockets were created 
(BBN? Still not sure)

• Which broke the model big time



What Unix started to change to 
(1978)

Basic Kernel

Socket
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(as in Cat,
out of)

Basic System calls
Open, Read, Write,
Close, fstat, etc.

Socket, bind
accept,listen
send, recv,
...



Later ...
more interfaces
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So look what's happened

• Incompatible new subsystem

• Multiple interfaces, multiple resources
– Duplicate functions for similar operations

– Basic consistency of the kernel started to fall apart

• Breaks pathname model completely
– “This is such an advanced concept that NT still 

does not do it (try ls \devices sometime)”

– Oh, wait, Unix doesn't either! There are all kinds of 
resources that have no pathname now



Then to now

• Over the years, legacy mechanisms that 
should have gone away did not

• The basic input model is still a tty

• Don't believe me? Type 'stty' at an xterm 
and tell me why a window has a baud rate

• Also, tell me why I can't edit the text in an 
xterm window



Xterm window
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• Wow, how advanced

• 1,000,000 times the performance and there's 
still an ASR-33 in the middle ...



Where we are

• 300 system calls and counting in Linux

• Most are different types of entry points to 
different subsytems, continuing the trend 
started by sockets

• Kernel layering gets more and more 
complex, revision by revision



What went wrong?

• Unix had the active process model

• And the passive data model

• But it lacked an active data model
– Farber suggested this in 1978 and we all thought it 

made no sense

– He was right, as usual

• It also lacked the richness of structure to 
allow naming resources

• And some things were just wrong



And more
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A better model
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With a common server interface,
location of services is no longer
important. The differentiation of 
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers. 
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Example

Server (process)
for email file system

Note: email file
system on top
of file system on 
top of local 
device. Any 
component can be 
 made remote.

Mail
tool Server (process)

for local file system

Device
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Interface

SAME interface for 
each type of thing

Kernel

9p2000 protocol



The key idea

• Unix Kernel is an “I/O multiplexer” 

• This newer Kernel is a “server multiplexer”
– Mediates access from processes to servers

– Note that servers are often processes

– Recurrence  as in the email example

• And devices, in operation, look just like 
servers to programs

• Uniform interface to all resources

• Standard protocol (9p2000) to all servers



We can have an active data model 
with named resources

• The data is no longer operated on by the OS

•  The OS serves as communications medium for Processes 
to Data

• The OS does not operate on data directly
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Advantages of this model

• Processes talk to servers

• What can be servers?
– File systems, for one thing

– Or file systems that aggregate file systems

• Mirtchovski's ResourceFS (for the 9grid)

– Or devices such as disks

– Or Grid schedulers

– Or graphics devices

– Or security systems



The boundaries are much less 
important

• Is the “file system” on my node, or somewhere else? 

• In this model, that doesn’t matter so much
– You can have it in one place, or another

– So Barney can stop beating me up

• Since the OS provides comms, the comms can be to a 
local component or via network to a remote 
component 

• Applications see same set of resources



Are there systems which 
implement this

• Yes, there is a system called Plan 9
– From Bell Labs

• Just had its fourth version release 2002
• Had its open source release party June 2003

– DOE helped



What Plan 9 is

• Not like anything you’ve seen
– Not a mini-, micro-, nano-, or other fad kernel

• Core OS is fixed-configuration set of 
“devices”
– Means “anything that has to be in the OS”
– E.g. Memory, Net hardware, etc.

• Everything else is a “Server”
– File systems, windowing systems, etc.



(Some) Plan 9 attributes

• Small kernel with fixed architecture
– Good for HPC nodes
– In-kernel devices (e.g. Memory, NIC, TCP)
– Out-of-kernel services (e.g. TCP, file systems)

• Yep, you really can put servers for same function in or out 
of kernel

• Devices can be prototyped as servers first

– This would be one way to implement, e.g., Portals

• Real-time scheduler
• Simple and fast



Plan 9 structure

• Processes attach servers as 
needed

• Attaches are inherited

• Not visible outside the 
group

• In this example one group 
has attached remote files

• Other group only needs 
IPC so it has no other 
services

Kernel
Memory, NIC,
Protocols,etc.

Process
File 

System

/net

Process

Process

Name Space

Name Space



Plan 9 system calls
(< ½ as many as BG/L “LWK”)

• Path
– Bind (NOT NETWORKING), chdir, exec, mount, 

open, create, remote, unmount, exec, remove, 

– notify (signal but with arbitrary-length byte string)

• FD
– close,dup, fsession, fauth, fstat, seek, stat, wstat

(i.e.chmod), pread, pwrite, fd2path

• Other
– Rfork, alarm, exits, noted, rendezvous, 

– Segattach, segdetach, segfree, segflush



Discussion

• How disks look
– Note lack of need for loopback mount

• Fossil
– What was I doing yesterday

• Venti
– Never lose a file again

• Where did getpid, kill and ptrace go?
– Simple: replaced by file I/O to /proc files



Conclusion

• Can an OS preserve the original simplicity 
of Unix 
– Most things are paths; common access model for 

different resources

• ... and yet attach the current capabilities of 
Unix? 
– Networking, Network file services, graphics

• Plan 9 indicates the answer is “yes”

• Except Plan 9 does far more than Unix



More conclusion

• So where were we in 1978? 
– In a pretty good place, but going the wrong way

• Where are we
– At the end of a long road, which may be ending (or 

not)

• Where can we go? 
– Find a different road

• But it won't be easy ...



Demo of CPU node.
“You wouldn't share needles,

so
Why would you share a compute 

node?


