
 Why Plan 9 is not dead yet
And

What we can learn from it
Ron Minnich

Advanced Computing Lab

Los Alamos National Lab

LA-UR-05-4132

Unix

• Simple open/read/write/close with streams
of bytes

• Resources are named via a visible path

• This is such an advanced concept that NT
still does not do it (try ls \devices
sometime)

• It was also extremely controversial

Two guys and a computer

Early Unix

Process UFS

Char Device

Block Device
Block
Interface

Char
Interface

UFS
Interface

Kernel

Unix kernel system calls
• Pathname

– Chdir, chmod, chown,
creat,exec,link,mknod,mount,open,stat,umount,unlink

• FD

– dup,fstat,gtty,stty,seek, read,write,open,close

• Void param or output-only

– fork,getgid,getpid,getuid,pipe, wait, time, times

• Pid

– Kill, signal

• Other

– Break, csw, nice, profil,ptrace, setgid, setuid, stime

So in Unix,
“Everything is a file”

• Or so we thought

• As it happened, the model broke down fairly
quickly

• In our case, it happened with this:

• (no picture)

• The DEC DAC

The DEC DAC problem

• Problem: you are reading from the DAC
(/dev/dac)

• OK, it's a file

• But you want to let a process read from
something else (i.e. Filter) and then ... open
a file ... oh wait ... IPC has no name

• Recall that kill() was one IPC mechanism,
pipes another, both anonymous

We didn't feel so smug at that
point

• The “everything is a file” model had broken
down fairly quickly

• And for a fairly important use
– Take a file, apply filter, present to users as file

– Can't do it!

• And then things got worse ...

Oh, heck

• Did I say everything was named?

• I lied

• Un-named things:
– Processes

– File descriptors

• Note that these got fixed later

• What didn't get fixed

When things started to break

• Unix model had common access method
different types of resources

• e.g., “/etc/passwd” and “/dev/dk0” are both
path names

• But get to different kinds of things

• So: one interface, multiple resources

• Late 1970s, Unix started to break

• Networking was the cause

Networking added to Unix

• Initially, people tried stuff like:
– “/dev/tcp/harv” (RAND RFC 618)

– One interface, different resource

– Failed, for various reasons

– Unix had no way (architecturally) at the time to
switch out to protocol streams from file names

• So binary names for sockets were created
(BBN? Still not sure)

• Which broke the model big time

What Unix started to change to
(1978)

Basic Kernel

Socket
“BAG”
(as in Cat,
out of)

Basic System calls
Open, Read, Write,
Close, fstat, etc.

Socket, bind
accept,listen
send, recv,
...

Later ...
more interfaces

Process

UFS

Char Device

Block DeviceBlock
Interface

Char
Interface

VFS
Interface

VFS

Other file system

Kernel
Sockets

So look what's happened

• Incompatible new subsystem

• Multiple interfaces, multiple resources
– Duplicate functions for similar operations

– Basic consistency of the kernel started to fall apart

• Breaks pathname model completely
– “This is such an advanced concept that NT still

does not do it (try ls \devices sometime)”

– Oh, wait, Unix doesn't either! There are all kinds of
resources that have no pathname now

Then to now

• Over the years, legacy mechanisms that
should have gone away did not

• The basic input model is still a tty

• Don't believe me? Type 'stty' at an xterm
and tell me why a window has a baud rate

• Also, tell me why I can't edit the text in an
xterm window

Xterm window

Process
Window

You

• Wow, how advanced

• 1,000,000 times the performance and there's
still an ASR-33 in the middle ...

Where we are

• 300 system calls and counting in Linux

• Most are different types of entry points to
different subsytems, continuing the trend
started by sockets

• Kernel layering gets more and more
complex, revision by revision

What went wrong?

• Unix had the active process model

• And the passive data model

• But it lacked an active data model
– Farber suggested this in 1978 and we all thought it

made no sense

– He was right, as usual

• It also lacked the richness of structure to
allow naming resources

• And some things were just wrong

And more

Process

UFS

Char Device

Block Device

Block
Interface

Char
Interface

VFS
Interface

VFS

Other file system

sysfs

Kernel

I know!
Let's put
devices
in the
file
system!

Sockets

Sysctl

Lotsa stuff!

A better model

Process Server
(i.e. process)

Device

Server
Interface

With a common server interface,
location of services is no longer
important. The differentiation of
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers.

Kernel

Example

Server (process)
for email file system

Note: email file
system on top
of file system on
top of local
device. Any
component can be
 made remote.

Mail
tool Server (process)

for local file system

Device

Server
Interface

SAME interface for
each type of thing

Kernel

9p2000 protocol

The key idea

• Unix Kernel is an “I/O multiplexer”

• This newer Kernel is a “server multiplexer”
– Mediates access from processes to servers

– Note that servers are often processes

– Recurrence as in the email example

• And devices, in operation, look just like
servers to programs

• Uniform interface to all resources

• Standard protocol (9p2000) to all servers

We can have an active data model
with named resources

• The data is no longer operated on by the OS

• The OS serves as communications medium for Processes
to Data

• The OS does not operate on data directly

Process

os

Data

Advantages of this model

• Processes talk to servers

• What can be servers?
– File systems, for one thing

– Or file systems that aggregate file systems

• Mirtchovski's ResourceFS (for the 9grid)

– Or devices such as disks

– Or Grid schedulers

– Or graphics devices

– Or security systems

The boundaries are much less
important

• Is the “file system” on my node, or somewhere else?

• In this model, that doesn’t matter so much
– You can have it in one place, or another

– So Barney can stop beating me up

• Since the OS provides comms, the comms can be to a
local component or via network to a remote
component

• Applications see same set of resources

Are there systems which
implement this

• Yes, there is a system called Plan 9
– From Bell Labs

• Just had its fourth version release 2002
• Had its open source release party June 2003

– DOE helped

What Plan 9 is

• Not like anything you’ve seen
– Not a mini-, micro-, nano-, or other fad kernel

• Core OS is fixed-configuration set of
“devices”
– Means “anything that has to be in the OS”
– E.g. Memory, Net hardware, etc.

• Everything else is a “Server”
– File systems, windowing systems, etc.

(Some) Plan 9 attributes

• Small kernel with fixed architecture
– Good for HPC nodes
– In-kernel devices (e.g. Memory, NIC, TCP)
– Out-of-kernel services (e.g. TCP, file systems)

• Yep, you really can put servers for same function in or out
of kernel

• Devices can be prototyped as servers first

– This would be one way to implement, e.g., Portals

• Real-time scheduler
• Simple and fast

Plan 9 structure

• Processes attach servers as
needed

• Attaches are inherited

• Not visible outside the
group

• In this example one group
has attached remote files

• Other group only needs
IPC so it has no other
services

Kernel
Memory, NIC,
Protocols,etc.

Process
File

System

/net

Process

Process

Name Space

Name Space

Plan 9 system calls
(< ½ as many as BG/L “LWK”)

• Path
– Bind (NOT NETWORKING), chdir, exec, mount,

open, create, remote, unmount, exec, remove,

– notify (signal but with arbitrary-length byte string)

• FD
– close,dup, fsession, fauth, fstat, seek, stat, wstat

(i.e.chmod), pread, pwrite, fd2path

• Other
– Rfork, alarm, exits, noted, rendezvous,

– Segattach, segdetach, segfree, segflush

Discussion

• How disks look
– Note lack of need for loopback mount

• Fossil
– What was I doing yesterday

• Venti
– Never lose a file again

• Where did getpid, kill and ptrace go?
– Simple: replaced by file I/O to /proc files

Conclusion

• Can an OS preserve the original simplicity
of Unix
– Most things are paths; common access model for

different resources

• ... and yet attach the current capabilities of
Unix?
– Networking, Network file services, graphics

• Plan 9 indicates the answer is “yes”

• Except Plan 9 does far more than Unix

More conclusion

• So where were we in 1978?
– In a pretty good place, but going the wrong way

• Where are we
– At the end of a long road, which may be ending (or

not)

• Where can we go?
– Find a different road

• But it won't be easy ...

Demo of CPU node.
“You wouldn't share needles,

so
Why would you share a compute

node?

