Foss|
an archival file server

Russ Cox
rsc@mit.edu

PDOS Group Meeting
January 7, 2003

http://pdos/~rsc/talks

Cached WORMile server (Quinlan and Thompson):
- active file system on magnetic disk acts as worm cache
- mark all disk blocks copy-on-write at 5am to take snapshot
- slowly dribble snapshot to worm
- maintain forward linked list of snapshots
- present snapshot tree to users
- became integral part of our computing environment

% 1s =1p /n/dump/*/*/386/bin/8c | unigq
——rwxrwxr-x presotto sys 243549 Jan 21 1997 8c

——rwxrwxr-x presotto sys 298289 Dec 14 18:55 8c
%

% yesterday -D authsrv.c

diff -n /n/dump/2003/0106/sys/src/cmd/auth/authsrv.c authsrv.c
/n/dump/2003/0106/sys/src/cmd/auth/authsrv.c:100 c authsrv.c:100
< break;

> exits(0);
%

Quinlan, “A Cached WORM File System”, SP&Becembed 991.
http://plan9.bell-1labs.com/~seanq/cw.pdf

HISLON Y, 1 oottt

WORM was right choice in 1990
- onejukebox isinfinite: capacity grows faster than our storage needs
- no head crashes
- plausible random access times
- magnetic disks too small, tape too slow
- bootes (1990): 100MB mem, 1GB disk, 300GB juke box
- emelie (1997): 350MB mem, 54GB disk, 1.2TB juke box

What about 19997
- disks cheap and big, getting cheaper and bigger
— disks cheaper and bigger than optical disk
— disks much faster than optical disk
- disks have head crashes
- build a better base out of magnetic disk?

Archival block store (Quinlan and Dorward):
- SHA1-addressed
- blocks never reclaimed
- omit duplicate blocks
- compress

| mplementation:
- log of all blocks ever written
- log broken into fixed-size (say, 500MB) chunks called arenas
- arenas copied to other media (tape, DVD, etc.) asthey fill
- Index on the side makes lookups efficient

Initial system:
- 1olaire (1999). 2GB mem, 36GB index, 480GB hw raid arenas

Quinlan and Dorward, **Venti: a new approach to archival storage’’, FAST 2002.
http://plan9.bell-labs.com/sys/doc/venti.pdf

Venti: storing data StreamsS............c.ccevevceeieiceeeeeeeeeee e

Venti stores blocks. To store large data, use hash tree:

BtData+3
BtData+?2
BtData+1

BtData

Venti: storing complex data StruCtUres...........cccvcveecceveeecceeveeeeee.

To storealist of streams, use a stream of VtEntry blocks.
- same as data but has block typesBtDir, BtDir+1, ...

Can encode tree-like structures
- each streamis all data(aVenti file) or all entry blocks (a Venti
directory)

VtRoot Key
[] Ventifile
[] Venti entry (VtEntry)

‘ [T T 1] Vent directory
[T T T1] ——= Venti pointer (SHA1 hash)

— |
—={ I I1[]
—]

Can traverse hierarchy ignoring higher-level structure
- general purpose copy
- other utilities

Venti: storing afile System ...,

Vac: Venti file system archive format
- vac directory can be thought of as stream of inodes plus stream of
directory entries

VtRoot Key

fsroot block [] Ventifile

i ' [] Venti entry (Entry)
root directory info block a
[T T T Ventidirectory
root metadata ———= Venti pointer (score)
Lo Vecfile
[] Vac entry (DirEntry)
T~ "7 77 Vacdirectory

— Vac pointer (integer index)

Venti: storing afile System ...,

Vac compresses everything to 45 bytes:

% cd /sys/src/cmd/fossil

% vac -f fossil.vac *

% 1s -1 fossil.vac

—rw—-rw—r—— M 8 rsc sys 45 Jan 6 14:51 fossil.vac

% cat fossil.vac
vac:1bcl2e0a8lbaf8clab62aaba382f6clalObll633a

% 1s =1 /n/vac

——rwXrwxr—-x rsc sys 61096 Dec 21 15:35 /n/vac/8.9ping
——rwxrwxr-x rsc sys 219307 Jan 5 13:11 /n/vac/8.flchk
——rwxrwxr-x rsc sys 217712 Jan 5 13:11 /n/vac/8.fl1fmt

%

Archival Venti-based file server (Quinlan, McKie, Cox)

Conceptually, rewrite of cached worm file server
- lots of software engineering advances (not discussed here)
- file system layout identical to vac
- local disk block pointers. 32-bit disk block zero-padded to 160 bits
- replace worm juke box with Venti store
- replace disk-based cache with disk-based write buffer
— write buffer can store file system if not using Venti

SNAPSNOLS........ooeceeee ettt

Epoch-based snapshot procedure:
- fs.epoch islogical snapshot clock (sequence number)
- every block in write buffer records allocation epoch b. epoch
- blockswith b.epoch < fs.epoch are copy on write.

To take snapshot: increment epoch, rewrite root block

My laptop takes snapshots on the hour:

% 1s =1p /n/snap/2003/0106/0600/sys/src/cmd/fossil/fs.c
——rw—-rw—-r—— rsc sys 16943 Jan 5 13:03 fs.c

% 1s =1p /n/snap/*/*/*/sys/src/cmd/fossil/fs.c | uniq
——rw-rw—r—— rsc sys 14895 Nov 28 02:05 fs.c

——rw—-rw—r—— rsc sys 16918 Jan 5 12:48 fs.c

——rw-rw-r—— rsc sys 16943 Jan 5 13:03 fs.c
%

No Venti as described so far.

ATCRIVAL ..o
An archival snapshot goes into the archival tree.

My laptop takes archival snapshots daily, at 5AM:

% 1s =1p /n/dump/2003/0106/sys/src/cmd/fossil/fs.c

—rw—rw—r—— M 1652 rsc sys 16943 Jan 5 13:03 fs.c

% 1s =1p /n/dump/*/*/sys/src/cmd/fossil/fs.c | unigqg
——rw—rw—-r—— rsc sys 14230 Nov 9 02:51 fs.c

——rw—-rw—-r—— rsc sys 16943 Jan 5 13:03 fs.c
%

Background process archivestree to Venti
- only knows about Venti hierarchy
- rewrites pointersto point at Venti blocks
- prints Venti hashesto console

% grep vac: console.log

Sat Jan 4 05:01:46 archive vac:cl64dbad46cbe319bf5a3a6b93a6aec0aa09198f0
Sun Jan 5 05:01:14 archive vac:96f48562b826b5b95fef854e488fb06e66ad9eca
Mon Jan 6 05:02:12 archive vac:722d61f18fff491d00103be309af66ebb7cba9df?2
%

BIOCK reClamation.............cc.oocuoicuoiceeeeee et
Non-archival snapshots will eventually fill the disk
Want to retire old snapshots to free up disk space

Epoch-based reclamation:
- fs.epochlLow isepoch of earliest available snapshot
- after copy-on-write, block is no longer in active file system
- b.epochClose Is epoch when b was copied-on-write
- block only needed by snapshotsin [b.epoch, b.epochClose).
- If b.epochClose < fs.epochLow then b can be reused

FOSSIH TTTCK S ..o e e e e e e e e e et e e e eee e e an e

Fswon’t boot, need to look at sources (on fs):

vacfs <{echo vac:ed62...3504}
cp /n/vac/active/sys/src/cmd/fossil/* /tmp/fossil

Reformat with new disk structures for write buffer:

fossil/f1fmt -v vac:ed62...3504 /dev/sdCO/fossil
- loses disk snapshots, not archival snapshots

Backup Venti server to other Venti server:
- walk log, writing new blocks to alternate server
- save pointer in log to make next backup ‘‘incremental’’
- 152-line C program, 25-line shell script wrapper

Suppose Venti is reliable (fault-tol erant)
- then archival snapshots are forever
- then loss of disk cache not a big deal: maybe |ose a day
- bugs cannot destroy old archives:
If you can read yesterday’s archive today,
you can read it five years from now

Even without Venti or aWORM,
- having an enforced read-only latch on blocks keeps the present from
corrupting the past
- random block tags identify dangling pointers immediately

How to makeVenti fault-tolerant? ...

Mirror one Venti server to another (log trick)
- my laptop mirrors to server in my apartment
- server in my apartment mirrorsto DVD and Bell Labs
- works for my data, not so good for Bell Labs

Mirror disks
— akernel device provides transparent mirroring for apps

RAID?
— good as long as disks are independent
- all thedisksin our first 480GB RAID array were identically
defective
- are RAID controllers debugged yet?
perhaps. cf. NetApp
perhaps not: cf. Amsterdam

How to makeVenti fault-tolerant? ...

Peer-to-peer?
- no incentivesto run servers
- no machines to kick when system fails
- no humansto kick when system fails
- okay for small network where everyone knows each other?

FUTUr @ WO K FOU FOSSI ... e

Keep pounding on it
- limited release just before New Year's
- open release today

More protocols
- speaks 9P2000 right now
- add trandators for NFS, SFS, SMB

What to dofor AMSEErAaM ... e

Distinguish ‘‘restoration’’ goal from ‘‘archival’’ goal
- archival solutions often provide adequate restoration
- restoration solutions can be very simple

Immediately, can do ‘‘restoration’’ by mirroring:
- disk array mirrored to big IDE drives nightly
- problem with smearing across time (more later)

I’d like an archival solution.
- 1 don’t use my pdos home directory
- 1’ve been spoiled by the dump

Amsterdam 0N FOSSH? ...,
Run Fossil and put our home directoriesthere.

Why not?
- not interested Unix semantics (ctime, symlinks, ...)
- not interested in NFS semantics (locks, wcc, ...)
- (not interested in cruft i don’t use/need)
- we have aworking file system that everyone likes
and that isn’t my problem to debug

Archiving AMSLEr dam?...........cooeeeeceeeeeeee e

Set up aVenti server on some unused disk in Amsterdam
(high bw)

Backup nightly disk images but:
- read fs structures so we don’t worry about unused blocks
- store blocksto Venti
- store block-to-SHA 1 mapping as big Venti file (30MB for 23GB
disk)
- provide access to images with NFS loopback server

Ship Venti blocks to DHash as background process

- store block-to-SHA 1+key mapping (60MB for 23GB disk)
- same server can provide access to images

Archiving AMSLEr dam?, 1 ...

When Venti fills, run copying gc to keep recent snapshots
- 1f we kept creation and ‘last use’ epochs for blocks, could do gcin
one linear scan
- one Venti server will last longer than you think

FIIE SYSLEM SMEAN ...

Need fs disk synced, paused during backup.

- pause disk writes or fswrites (whichever easier)

How long is the pause?
- streaming disk reads on amsterdam: approx. 35MB/s
- MD5 on amsterdam: approx. 600MB/s (not CPU bound)
- SHA1 won’'t be different enough to matter
- lower bound: 10 minutes for afull disk
- to be safe: say 20 minutes worst case

20 minutes per disk, in seguence
- 4am-7am worst case
- 4am-5am more likely
- schedule witchel’ s disk last
- 8am-9am?
- optimization: scan unpaused fs then pause and rescan

|s ten minutes per fs acceptable?

USer-1evelarCRIVES?............oo e,
Time smear IS not as serious a problem.

Wouldn’t be exact enough for restoration though.

Need help finding what changed.

A ‘‘change’’ servicefor disks

Keep a 64-bit (128-bit?) epoch as a per-disk clock.

Each write updates the epoch for that disk block and bump the
epoch.

Efficient structure gives map from epoch to disk blocks edited
since then.

A ‘‘change’’ servicefor file systems

Keep a 64-bit (128-bit?) epoch as a per-fs clock.

Each change updates the *“epoch’” on the file system piece
and bumps the epoch:

- changing file contents changes the file' s epoch

- changing file metadata changes the parent directory’ s epoch

- removing afile changes the parent directory’s epoch

Efficient structure maps from epoch to files and directories
changed since then.

Would be useful for Tratoo.

@11 g1 G0 [1Y RS

