
Fossil
an archival file server

Russ Cox
rsc@mit.edu

PDOS Group Meeting
January 7, 2003

http://pdos/~rsc/talks

History ...

Cached WORMfile server (Quinlan and Thompson):
� active file system on magnetic disk acts as worm cache
� mark all disk blocks copy-on-write at 5am to take snapshot
� slowly dribble snapshot to worm
� maintain forward linked list of snapshots
� present snapshot tree to users
� became integral part of our computing environment

% ls −lp /n/dump/*/*/386/bin/8c | uniq
−−rwxrwxr−x presotto sys 243549 Jan 21 1997 8c
...
−−rwxrwxr−x presotto sys 298289 Dec 14 18:55 8c
%

% yesterday −D authsrv.c
diff −n /n/dump/2003/0106/sys/src/cmd/auth/authsrv.c authsrv.c
/n/dump/2003/0106/sys/src/cmd/auth/authsrv.c:100 c authsrv.c:100
< break;
−−−
> exits(0);
%

Quinlan, ‘‘A Cached WORM File System’’, SP&EDecember1991.
http://plan9.bell−labs.com/~seanq/cw.pdf

History, ii ..

WORM was right choice in 1990
� one jukebox is infinite: capacity grows faster than our storage needs
� no head crashes
� plausible random access times
� magnetic disks too small, tape too slow
� bootes (1990): 100MB mem, 1GB disk, 300GB juke box
� emelie (1997): 350MB mem, 54GB disk, 1.2TB juke box

What about 1999?
� disks cheap and big, getting cheaper and bigger
� disks cheaper and bigger than optical disk
� disks much faster than optical disk
� disks have head crashes
� build a better base out of magnetic disk?

Venti ...

Archival block store (Quinlan and Dorward):
� SHA1-addressed
� blocks never reclaimed
� omit duplicate blocks
� compress

Implementation:
� log of all blocks ever written
� log broken into fixed-size (say, 500MB) chunks called arenas
� arenas copied to other media (tape, DVD, etc.) as they fill
� index on the side makes lookups efficient

Initial system:
� iolaire (1999): 2GB mem, 36GB index, 480GB hw raid arenas

Quinlan and Dorward, ‘‘Venti: a new approach to archival storage’’, FAST 2002.
http://plan9.bell−labs.com/sys/doc/venti.pdf

Venti: storing data streams ..

Venti stores blocks. To store large data, use hash tree:

BtData

...BtData+1

... ...BtData+2

...BtData+3

Venti: storing complex data structures ..

To store a list of streams, use a stream of VtEntry blocks.
� same as data but has block types BtDir, BtDir+1, ...

Can encode tree-like structures
� each stream is all data (a Venti file) or all entry blocks (a Venti

directory)

VtRoot Key

Venti file

Venti entry (VtEntry)

Venti directory
Venti pointer (SHA1 hash)

Can traverse hierarchy ignoring higher-level structure
� general purpose copy
� other utilities

Venti: storing a file system ...

Vac: Venti file system archive format
� vac directory can be thought of as stream of inodes plus stream of

directory entries

VtRoot

fs root block

root directory info block

root metadata

. ...
..
..
..................................

Key

Venti file

Venti entry (Entry)

Venti directory
Venti pointer (score)

.
.................. Vac file

Vac entry (DirEntry)

Vac directory
Vac pointer (integer index)

Venti: storing a file system ...

Vac compresses everything to 45 bytes:
% cd /sys/src/cmd/fossil
% vac −f fossil.vac *
% ls −l fossil.vac
−−rw−rw−r−− M 8 rsc sys 45 Jan 6 14:51 fossil.vac
% cat fossil.vac
vac:1bc12e0a81baf8c1ab62aaba382f6c1a0b11633a
% ls −l /n/vac
−−rwxrwxr−x rsc sys 61096 Dec 21 15:35 /n/vac/8.9ping
−−rwxrwxr−x rsc sys 219307 Jan 5 13:11 /n/vac/8.flchk
−−rwxrwxr−x rsc sys 217712 Jan 5 13:11 /n/vac/8.flfmt
...
%

Fossil ...

Archival Venti-based file server (Quinlan, McKie, Cox)

Conceptually, rewrite of cached worm file server
� lots of software engineering advances (not discussed here)
� file system layout identical to vac
� local disk block pointers: 32-bit disk block zero-padded to 160 bits
� replace worm juke box with Venti store
� replace disk-based cache with disk-based write buffer
� write buffer can store file system if not using Venti

Snapshots..

Epoch-based snapshot procedure:
� fs.epoch is logical snapshot clock (sequence number)
� every block in write buffer records allocation epoch b.epoch
� blocks with b.epoch < fs.epoch are copy on write.

To take snapshot: increment epoch, rewrite root block

My laptop takes snapshots on the hour:
% ls −lp /n/snap/2003/0106/0600/sys/src/cmd/fossil/fs.c
−−rw−rw−r−− rsc sys 16943 Jan 5 13:03 fs.c
% ls −lp /n/snap/*/*/*/sys/src/cmd/fossil/fs.c | uniq
−−rw−rw−r−− rsc sys 14895 Nov 28 02:05 fs.c
...
−−rw−rw−r−− rsc sys 16918 Jan 5 12:48 fs.c
−−rw−rw−r−− rsc sys 16943 Jan 5 13:03 fs.c
%

No Venti as described so far.

Archival...

An archival snapshot goes into the archival tree.

My laptop takes archival snapshots daily, at 5AM:
% ls −lp /n/dump/2003/0106/sys/src/cmd/fossil/fs.c
−−rw−rw−r−− M 1652 rsc sys 16943 Jan 5 13:03 fs.c
% ls −lp /n/dump/*/*/sys/src/cmd/fossil/fs.c | uniq
−−rw−rw−r−− rsc sys 14230 Nov 9 02:51 fs.c
...
−−rw−rw−r−− rsc sys 16943 Jan 5 13:03 fs.c
%

Background process archives tree to Venti
� only knows about Venti hierarchy
� rewrites pointers to point at Venti blocks
� prints Venti hashes to console

% grep vac: console.log
...
Sat Jan 4 05:01:46 archive vac:c164dba46cbe319bf5a3a6b93a6aec0aa09198f0
Sun Jan 5 05:01:14 archive vac:96f48562b826b5b95fef854e488fb06e66ad9eca
Mon Jan 6 05:02:12 archive vac:722d61f18fff491d00103be309af66ebb7cba9f2
%

Block reclamation...

Non-archival snapshots will eventually fill the disk

Want to retire old snapshots to free up disk space

Epoch-based reclamation:
� fs.epochLow is epoch of earliest available snapshot
� after copy-on-write, block is no longer in active file system
� b.epochClose is epoch when b was copied-on-write
� block only needed by snapshots in [b.epoch, b.epochClose).
� if b.epochClose ≤ fs.epochLow then b can be reused

Fossil tricks..

Fs won’t boot, need to look at sources (on fs):
vacfs <{echo vac:ed62...3504}
cp /n/vac/active/sys/src/cmd/fossil/* /tmp/fossil

Reformat with new disk structures for write buffer:
fossil/flfmt −v vac:ed62...3504 /dev/sdC0/fossil

� loses disk snapshots, not archival snapshots

Backup Venti server to other Venti server:
� walk log, writing new blocks to alternate server
� save pointer in log to make next backup ‘‘incremental’’
� 152-line C program, 25-line shell script wrapper

Robustness ...

Suppose Venti is reliable (fault-tolerant)
� then archival snapshots are forever
� then loss of disk cache not a big deal: maybe lose a day
� bugs cannot destroy old archives:

if you can read yesterday’s archive today,
you can read it five years from now

Even without Venti or a WORM,
� having an enforced read-only latch on blocks keeps the present from

corrupting the past
� random block tags identify dangling pointers immediately

How to makeVenti fault-tolerant? ...

Mirror one Venti server to another (log trick)
� my laptop mirrors to server in my apartment
� server in my apartment mirrors to DVD and Bell Labs
� works for my data, not so good for Bell Labs

Mirror disks
� a kernel device provides transparent mirroring for apps

RAID?
� good as long as disks are independent
� all the disks in our first 480GB RAID array were identically

defective
� are RAID controllers debugged yet?

perhaps: cf. NetApp
perhaps not: cf. Amsterdam

How to makeVenti fault-tolerant? ...

Peer-to-peer?
� no incentives to run servers
� no machines to kick when system fails
� no humans to kick when system fails
� okay for small network where everyone knows each other?

Future work for Fossil..

Keep pounding on it
� limited release just before New Year’s
� open release today

More protocols
� speaks 9P2000 right now
� add translators for NFS, SFS, SMB

What to do for Amsterdam?..

Distinguish ‘‘restoration’’ goal from ‘‘archival’’ goal
� archival solutions often provide adequate restoration
� restoration solutions can be very simple

Immediately, can do ‘‘restoration’’ by mirroring:
� disk array mirrored to big IDE drives nightly
� problem with smearing across time (more later)

I’d like an archival solution.
� i don’t use my pdos home directory
� i’ve been spoiled by the dump

Amsterdam on Fossil? ..

Run Fossil and put our home directories there.

Why not?
� not interested Unix semantics (ctime, symlinks, ...)
� not interested in NFS semantics (locks, wcc, ...)
� (not interested in cruft i don’t use/need)
� we have a working file system that everyone likes

and that isn’t my problem to debug

Archiving Amsterdam?..

Set up a Venti server on some unused disk in Amsterdam
(high bw)

Backup nightly disk images but:
� read fs structures so we don’t worry about unused blocks
� store blocks to Venti
� store block-to-SHA1 mapping as big Venti file (30MB for 23GB

disk)
� provide access to images with NFS loopback server

Ship Venti blocks to DHash as background process
� store block-to-SHA1+key mapping (60MB for 23GB disk)
� same server can provide access to images

Archiving Amsterdam?, ii ..

When Venti fills, run copying gc to keep recent snapshots
� if we kept creation and ‘last use’ epochs for blocks, could do gc in

one linear scan
� one Venti server will last longer than you think

File system smear..

Need fs disk synced, paused during backup.
� pause disk writes or fs writes (whichever easier)

How long is the pause?
� streaming disk reads on amsterdam: approx. 35MB/s
� MD5 on amsterdam: approx. 600MB/s (not CPU bound)
� SHA1 won’t be different enough to matter
� lower bound: 10 minutes for a full disk
� to be safe: say 20 minutes worst case

20 minutes per disk, in sequence
� 4am-7am worst case
� 4am-5am more likely
� schedule witchel’s disk last
� 8am-9am?
� optimization: scan unpaused fs then pause and rescan

Is ten minutes per fs acceptable?

User-levelarchives?...

Time smear is not as serious a problem.

Wouldn’t be exact enough for restoration though.

Need help finding what changed.

A ‘‘change’’ service for disks ..

Keep a 64-bit (128-bit?) epoch as a per-disk clock.

Each write updates the epoch for that disk block and bump the
epoch.

Efficient structure gives map from epoch to disk blocks edited
since then.

A ‘‘change’’ service for file systems ...

Keep a 64-bit (128-bit?) epoch as a per-fs clock.

Each change updates the ‘‘epoch’’ on the file system piece
and bumps the epoch:

� changing file contents changes the file’s epoch
� changing file metadata changes the parent directory’s epoch
� removing a file changes the parent directory’s epoch

Efficient structure maps from epoch to files and directories
changed since then.

Would be useful for Tra too.

Other ideas? ..

