
Alef User’s Guide

Bob Flandrena
bobf@plan9.att.com

Introduction

The Alef programming language provides a convenient means for implementing concur­
rent programs. An Alef program looks like a C program: the syntactic structure is simi­
lar and the expression syntax is almost identical. But, despite the similarity of the lan­
guage constructs, most Alef programs are structurally dissimilar and operate differently.

This document describes some of Alef�s capabilities, concentrating on concurrency fea­
tures and language facilities not found in C. Alef provides language support for two
process synchronization models: shared variables and message passing. The styles can
be freely mixed and the choice often depends on the details of a program�s design. Pro­
grams in the shared variable style rely on locks to synchronize access to shared data.
The message passing model benefits from Alef primitives that control, send on, receive
from, and multiplex message channels. This document focuses on the latter synchro­
nization model, emphasizing its interaction with abstract data types and language-
supplied process management primitives.

The Alef Language Reference Manual by Phil Winterbottom contains the formal defini­
tion of the language and is a necessary adjunct to this document. Also, we assume a
basic understanding of parallel programming and a familiarity with ANSI C. Alef compil­
ers are available on Plan 9 and on Silicon Graphics systems running IRIX. The implemen­
tations are almost identical; this document explicitly identifies the few places where sys­
tem dependencies intrude. Although some examples are expressed in terms of the Plan
9 system model, it is usually easy to produce an equivalent Unix implementation.
Throughout this paper, when reference is made to the C language, it is the ANSI C stan­
dard being compared rather than the Plan 9 dialect, which has some extensions.

Overview

Alef consists of four parts: the Alef compiler, run-time support functions, header files,
and libraries. The Alef compiler uses the ANSI C preprocessor, so the syntax and
semantics of preprocessor directives are identical to those of C. However, because of
differences in the declaration syntax, the Alef compiler does not accept C header files.
The Alef system header files are stored in the alef subdirectory of the system header
file directory. Alef and C programs implement incompatible stack models, so object
modules from the two languages cannot be linked with each other and separate system
libraries are needed for each compiler. The Alef system libraries are stored in the alef
subdirectory of a system library directory. The Alef compiler and loader automatically
search the proper directories for the system headers and libraries.

All Alef programs begin by including header file alef.h. This file contains the declara­
tions of the complex data types used by the Alef library functions and the prototypes of
the functions themselves. Unlike C, the Alef run-time system continually interacts with
a program during its execution. It provides functions that manage threads of execution
and pass messages between them. Most of these functions implement language opera­
tors and are implicitly called by the compiler, but some, such as those that manipulate

­ 2 ­

locks, can be invoked explicitly by the application program.

An Alef program consists of one or more processes each of which contains one or more
tasks. Processes are threads of execution that are preemptively scheduled by the sys­
tem and may execute in parallel on a multi-processor. Tasks are controlled by the Alef
run-time and execute cooperatively. The first task of each program is implicitly created
when the program starts; it begins execution at the function named main. A process
may create additional processes and tasks each of which begins execution at a specified
function. Threads of execution often communicate on channels as illustrated in the fol­
lowing diagram:

Process 1

Main Task 2
Process 2

Task 1

Process 3

Task 1 Task 2 Task 3

Channel

This section provides an overview of Alef�s process creation and communication primi­
tives. Later sections then expand on this groundwork.

Alef provides convenient mechanisms for starting threads of execution. The proc
primitive creates a process that begins execution at the function supplied as its
operand. For example, the statement:

proc func(1, 2);

starts a process at the function named func and passes it two arguments. The current
process continues execution at the statement following the proc statement.

An Alef channel is a mechanism for passing data between threads of execution. A chan­
nel is similar to a pipe, but unlike a pipe, which is typeless, a channel can only transport
the single type specified in its declaration. The chan statement

chan(int) c;

declares a channel named c that transports integer values. Unlike variables, channels
are not allocated when they are declared; instead, the alloc primitive must be used to
allocate and initialize a channel:

alloc c; /* allocate channel named ’c’ */

The send operator, <−=, transmits the result of the expression supplied as its right
operand on the channel specified as its left operand:

c <−= 1+1; /* send a 2 on channel ‘c’ */

The unary receive operator, <−, receives a message on the channel supplied as its
operand. The received value may then be manipulated by other operators; for example,
it can be assigned to a variable or used as an operand in an expression:

­ 3 ­

int i;

i = <−c; /* assign value received on c to i */
func(<−c); /* pass value received on c to func */

We can combine processes and channels to implement a simple message passing pro­
gram:

#include <alef.h>

void
receive(chan(byte*) c)
{

byte *s;

s = <−c;
print("%s\n", s);
terminate(nil);

}

void
main(void)
{

chan(byte*) c;

alloc c;
proc receive(c);

c <−= "hello world";
print("done\n");
terminate(nil);

}

The main process declares and allocates a channel that transports a string address. It
then creates a new process with the channel as its argument and sends the address of a
string on the channel before printing a message and terminating. The new process
begins execution in function receive, where it blocks on the channel until a message
arrives and then prints the string before terminating. The order in which the print state­
ments execute is indeterminate, depending on such external factors as system load, the
number of processors, and system scheduling policy.

This example illustrates a control structure common to Alef programs: an executive pro­
cess starts other threads of execution and communicates with them via channels. Sub­
sequent examples elaborate on this basic architecture to illustrate the capabilities of
channels and the Alef process control model.

Types

Alef�s basic types look similar to those of C but some behave differently. The byte
data type is a combination of C�s char and unsigned char types with the semantics
of the latter. The sizes of some integer types also differ; ints and lints are at least
32 bits and 64 bits long. The single floating point type, float, is always double preci­
sion.

A complex type is a collection of basic types or complex types. Alef provides four com­
plex types: union, aggr, adt, and tuple. Unions and aggrs are similar to C
unions and structs. Adts and tuples are new and are described in later sec­
tions.

An aggr statement is similar to a combination of C struct and typedef

­ 4 ­

statements. The Alef declaration:

aggr Point {
int x;
int y;

};

is equivalent to the C statement

typedef struct {
int x;
int y;

} Point;

An Alef complex type cannot be declared and defined in the same statement; it must be
declared first and bound to a variable subsequently. Unlike C, the members of a com­
plex type may be named or unnamed. An unnamed member declaration contains a type
specification but no following tag. A complex type may contain many unnamed mem­
bers, but there can be only one unnamed member of each type. For example, we can
declare a Circle

aggr Circle {
int radius;
Point;

};
Circle c;

consisting of an unnamed center point and a radius but we must name the end points of
a Line

aggr Line {
Point p1;
Point p2;

};
Line ln;

because there can�t be two unnamed Point members in the aggregate.

Named members of an Alef complex type are referenced using C�s syntax. The . opera­
tor selects the member specified by its right operand from the complex type on the left;
the −> operator selects the member from a pointer to the type. When a member refer­
ence does not match any named member, the unnamed members are searched
breadth-first for a member with the desired name. In effect, the members of unnamed
inner complex types, to arbitrary depth, may be referenced as if they were members of
the containing complex type as long as their names are unique within the collection.
For example, we can directly refer to the center coordinates of a Circle as c.x and
c.y but references to the end coordinates of a line must be fully qualified as
ln.p1.x, ln.p1.y, ln.p2.x, and ln.p2.y.

As in C, complex types can be assigned, but Alef provides special promotion rules when
the source complex type contains unnamed members. When the operands of an assign­
ment expression evaluate to different complex types, the compiler searches the
unnamed members of the right hand complex type breadth-first for a member of the
same type as the left hand side and selects that member for assignment. For example,

Point p;
Circle c;

p = c;

assigns the unnamed Point member of the Circle named c to the Point named p.
The promotion rules also apply to the evaluation of function arguments and return val­
ues. In the first case arguments are compared to the formal parameters in the function

­ 5 ­

prototype and promoted, if necessary. In the latter case, the return value is evaluated
relative to the type of the function. For example, in

int
eqpt(Point p1, Point p2)
{

return p1.x == p2.x && p1.y == p2.y;
}

void
main(void)
{

Point p;
Circle c;

if(eqpt(c, p)) ...
}

the first argument to eqpt is synthesized by promoting the Point member of the
Circle aggregate to the type of the formal parameter. Similarly, if eqpt were
changed to accept the addresses of two Points,

if(eqpt(&c, &p)) ...

Alef would promote the address of the Circle aggregate to the address of its
unnamed Point member.

The ability to directly reference members of unnamed inner complex types allows us to
avoid the C requirement of attaching dummy names to nested complex types and then
having to specify dummy qualifiers on each member reference. Consider the definition
of a new complex type that is either a Line or a Circle:

aggr Shape {
int type;
union {

Circle;
Line;

};
};
Shape s;

Since the union, Line, and Circle members are unnamed, we avoid unwieldy refer­
ences like s.dummy.circ.pt.x; s.x can only refer to the x coordinate of the
Circle member, and s.p1.x unambiguously selects the x coordinate of the first
Point of the Line member.

An unnamed member can be directly referenced by specifying the type name of the
member. For example,

Shape s;

memset(&s.Circle, 0, sizeof(s.Circle));

clears the Circle member of the Shape aggregate.

Tuples

A tuple is a complex type whose members are all unnamed. Most programs process
tuples as a unit; if the members are accessed often, the tuple should be an aggr with
named members. Tuples are often used to bundle several values so they can be trans­
ported on a channel, passed as an argument, or returned from a function as a unit.

A tuple declaration consists of the tuple keyword followed by a parenthesized list of

­ 6 ­

type specifications for each member:

tuple(int, byte*, int) t;

defines a tuple named t containing two integers and an address. The tuple keyword
can be omitted when the syntax is unambiguous, but it�s easier to supply it in all decla­
rations than to remember when it isn�t needed. Tuples can be nested to arbitrary depth:

tuple(int, tuple(byte, byte*), int) t;

declares a tuple containing an integer, a tuple, and an integer.

Tuples may be used in any context appropriate for a complex type: as assignment
operands, as function arguments, as function return values, or as channel messages.
The sizeof operator yields the size of a tuple in bytes. As with other complex types,
tuples are always passed by value.

A tuple declaration declares a tuple data type and binds it to one or more variables of
that type. Alef also provides a tuple operator that constructs an unnamed tuple contain­
ing its operands. Syntactically, the tuple operator is specified as a parenthesized list of
two or more expressions:

(1+2, "abc", var)

defines an unnamed tuple containing an int, a byte pointer, and the value of the vari­
able named var. Although a single expression enclosed in parentheses may look like a
tuple with one member, it is parsed as a parenthesized scalar.

A tuple may be the source or destination operand of an assignment expression. As with
other assignment expressions, the result of a tuple assignment is the value of the right
hand side. When the destination operand is a tuple variable, the source must be a
named tuple of the same type or an unnamed tuple. In the latter case, the type of each
member of the unnamed tuple must exactly match the type of the corresponding mem­
ber of the destination tuple. The correspondence can be forced by casting the individ­
ual members of the unnamed tuple to the proper types or by casting the unnamed tuple
to the type of the destination tuple. For example, the code fragment

tuple(int, int, byte*) t;
byte i;

t = (0, (int) i, "abc");
t = (tuple (int, int, byte*)) (0, i, "abc");

illustrates two equivalent ways of assigning values to the tuple named t. Notice that
the variable named i must be explicitly converted from a byte to an int before
assignment. Either method is acceptable; the cast is simply applied at different points
during the evaluation of the right hand tuple.

When an unnamed tuple appears on the left hand side of an assignment statement all of
its members must be variables or the keyword nil. In this case each member of the
source tuple is assigned to the variable in the corresponding member of the destination
tuple; in effect, the right hand tuple is decomposed into its constituent members. When
a member of the destination tuple is nil, the corresponding member of the source
tuple is discarded. If the types of corresponding members differ, the source value is
promoted to the type of the destination. This differs from assignments to named
tuples, where promotion never occurs and explicit casts are necessary. For example,

­ 7 ­

float a;
byte *b;
tuple(int, int, byte*) t;

t = (100, 200, "xyz");
(nil, a, b) = t;

assigns 200.0 to the variable named a and the string "xyz" to b.

Aggregates and unnamed tuples may be assigned to each other. When an aggregate is
assigned to a tuple, the members of the aggregate, named and unnamed, are assigned,
after promotion, to the corresponding variables in the destination tuple. For example,

Circle c;
Point p;
int rad;

(rad, p) = c;

decomposes a Circle into its constituent radius and center point. When an unnamed
tuple is assigned to an aggregate, the members of the aggregate are loaded with the
corresponding values of the tuple. The types of the source and destination members
must match exactly, either by casting each member of the tuple or by casting the con­
structed tuple to the type of the aggregate. For example,

Circle c;

c = (Circle)(3, (1.0,1.0));
c = (3, (Point)(1.0,1.0));

illustrates two equivalent ways of loading a Circle aggregate using casts to convert
the float coordinates to integers. Notice that the statement

c = (3, (1,1));

is acceptable only because the types of the members of the source tuple exactly match
the types of the members of the Circle aggregate. An aggregate may not be
assigned to a named tuple or vice-versa; only unnamed tuples may be used with aggre­
gates in assignment expressions.

When the value assigned to a member of a tuple can affect the evaluation of members of
the source tuple, the compiler detects the dependency and performs the evaluation
based on the original values of the right hand members. Thus, the code fragment

int a, b;

(b,a) = (a,b);

correctly swaps the values of the variables a and b.

The promotion rules governing the assignment of tuples also apply when a tuple is
passed as a function argument or is returned by a function. Arguments are evaluated
relative to the corresponding formal parameter in the function prototype and return val­
ues are matched against the return type of the containing function. Members of
unnamed tuples are promoted when the tuple is passed into or returned from a func­
tion. However, when a named tuple is supplied as an argument or returned by a func­
tion, the types of its members must exactly match the types of the members of the cor­
responding formal parameter or the function return type.

Unnamed tuples are especially useful for bundling several values so they can be passed
into or returned from a function as a unit. This strategy narrows the function interface
without requiring dummy variables to hold constant information. In the code fragment

­ 8 ­

Point
midpoint(Point p1, Point p2)
{

return ((p1.x+p2.x)/2,(p1.y+p2.y)/2);
}

void
main(void)
{

Point p;

p = midpoint((1,1), (3,1));
}

the arguments to function midpoint and its return value are synthesized from the
constituent coordinates.

Unnamed tuples are also ideal for returning several unrelated values from a function.
Consider the library function strtoui, which converts a text string to an unsigned
binary value. It accepts a pointer to the string, a pointer to a pointer and an integer
base. It returns a binary value and updates the second argument to point to the charac­
ter in the string following the last digit of the extracted number. A tuple containing an
error code, the binary value, and the new string pointer simplifies the function interface:

tuple(int, uint, byte*)
strtoui(byte* str, int base)
{

int val;

while(*str != 0 && whitespace(*str))
str++;

if(str == nil || *str == 0)
return(0, 0, str);

while(*str && !whitespace(*str)) {
if(!validdigit(*str, base))

return (−1, val, str+1);
/* extract digit into val */
str++;

}
return(1, val, str);

}

The code to extract numbers from a string would be:

int ret;
uint val;
byte *p, *newp;

while(*p) {
(ret, val, newp) = strtoui(p, 10);
if(ret == 0)

break;
if(ret < 0) {

*newp = 0;
print("bad number %s\n", p);

} else
print("%d\n", val);

p = newp;
}

A tuple is displayed by assigning it to an unnamed tuple and then printing the variables

­ 9 ­

of that tuple. For example,

tuple(int, byte*, byte*) func();
int a;
byte *b, *c;

(a, b, c) = func();
print("tuple = (%d %s %s)\n", a, b, c);

prints the values of the tuple returned by func.

Processes

An Alef process is a preemptively scheduled thread of execution. An Alef program may
have as many processes as desired, subject to system restrictions on the number of
active processes per user. The proc primitive accepts a list of function invocations as
its operand. It scans the list from left to right, starting a new process for each member.
The new process begins execution at the specified function with the arguments given in
the invocation. The arguments are evaluated in the original process before the new pro­
cess is created.

On multi-processors, Alef processes may execute in parallel. Since the processes are
scheduled by the operating system, the degree of parallel execution and process inter­
leaving is beyond the scope of the language. On a single processor system, Alef pro­
cesses always interleave execution. The processes comprising a program communicate
by exchanging messages on channels or by accessing shared data. The Alef language
definition does not specify whether processes share a common address space, but all
current implementations use the shared memory model. Programs that communicate
via shared data tend to be smaller and faster but may not be portable to an Alef imple­
mentation that does not support shared memory. Message passing programs work well
for all memory models and are usually easier to debug because channels provide most
of the process synchronization. The examples in this document assume a shared mem­
ory implementation.

When the proc primitive starts a new process neither process is dominant; Alef pro­
cesses are more siblings than parent and child. One process may control another with a
protocol, but that interaction is determined by the application, not the language.

A program must explicitly terminate all processes to completely stop execution. When a
process terminates, other processes in the program are not notified and continue to
execute. Several library functions terminate threads of execution. The exits function
calls the termination functions previously registered with atexit before terminating
the process and all of its tasks. The terminate function terminates a thread of exe­
cution; when the last thread in the last process is terminated, terminate calls
exits. Alef library functions assume that application-supplied exit functions are only
invoked at program termination so an application must ensure that exits is only called
by the last process to terminate. In general, only one process in a program should
explicitly call exits; others should use terminate. When a process or task returns
from the function started by the proc or task statement it calls terminate implic­
itly.

Alef processes are well suited for decoupling the time-critical processing of asyn­
chronous events from a long-running calculation. Instead of polling for events during a
computation, an Alef program uses a slave process to service the events while the mas­
ter process continues the calculation. The slave process blocks in a system call until an
event occurs, handles it, and sends a message on a channel to the master process,
which services it when convenient. The event interface in the master process is
expressed entirely in terms of channel operations; in effect, the system call is converted
to a channel message.

­ 10 ­

Consider a program that must accept keyboard input while engaged in a long-running
calculation. We could implement the keyboard handler as a slave process:

void
kbdproc(chan(int) kbdc)
{

byte c;
int n, fd, ctlfd;

fd = open("/dev/cons", OREAD);
ctlfd = open("/dev/consctl", OWRITE);
write(ctlfd, "rawon", 5); /* set raw mode */
for(;;) {

n = read(fd, &c, 1);
if(n <= 0 || c == 0x04) {

kbdc <−= −1;
return;

}
n = processinput(c);
if(n)

kbdc <−= n;
}

}

Kbdproc opens the keyboard, sets it to raw mode, then continually reads bytes, pass­
ing each to function processinput for low-level processing. The exact form of the
processing is not of interest; it could be something like accumulating multiple bytes into
a single character or recognizing escape sequences. Valid input values are sent to the
executive process on the channel supplied as the argument. When EOF (0x04) is
detected or an error occurs, the slave process sends a negative value on the channel and
exits. The executive process

void
main(void)
{

int r;
chan(int) kbd;

alloc kbd;
proc kbdproc(kbd);

for(;;) {
r = <−kbd;
if(r < 0)

terminate(nil);
/* process the input value */

}
}

allocates a channel, starts the slave process and receives integers from the slave pro­
cess. The actual processing of each input value is unimportant: for example, input
could be accumulated into a command and executed. What is important is that time-
critical keystroke processing is confined to the slave process, which executes concur­
rently with the executive process. Although the processes execute asynchronously,
their interaction is synchronous: the executive process blocks until data is received and
the slave blocks in the send when the executive is not receiving.

We can extend the program to accept mouse input by adding a slave process for the
mouse. It sends an Mevent aggregate

­ 11 ­

aggr Mevent {
Point;
int buttons;

};

containing the mouse coordinates and the button state on a channel to the executive
process each time a mouse event occurs. The executive process must simultaneously
receive on the channels from the mouse and keyboard slave processes. The Alef alt
statement provides this functionality. Its syntax is similar to that of a switch state­
ment:

alt {
case <−c0: /* receive & discard input on channel c0 */

break;
case r = <−c1: /* receive input on channel c1 into r*/

break;
case c2 <−= 1: /* send 1 on c2 when there is a receiver*/

break;
}

Each case is associated with a send or receive operation on a different channel. When
no channel is ready, the process blocks until a channel operation can succeed. When
only one channel is ready, the case statement associated with it is selected and the
operation is executed. When more than one channel is ready, a case associated with a
ready channel is selected at random. The alt statement does not have a special case
corresponding to the default case in a switch statement; all cases must depend on
channel send and receive operations.

The mouse slave process is similar to the keyboard slave process:

void
mouseproc(chan(Mevent) mc)
{

int fd, n;
byte buf[1024];
Mevent m;

fd = open("/dev/mouse", OREAD);
for(;;) {

n = read(fd, buf, sizeof(buf));
if(n <= 0)

continue;
m = decodemouse(buf, n);
mc <−= m;

}
}

After opening the mouse device, the process continually reads the device, invokes
decodemouse to decode the buffer into an Mevent aggregate, and sends that to the
executive process on the channel supplied as its argument.

The executive process allocates two channels, starts the slave processes, and uses the
alt statement to select between keyboard events and mouse events on the channels:

­ 12 ­

void
main(void)
{

int r;
Mevent m;
chan(int) kbd;
chan(Mevent) mouse;

alloc kbd, mouse;
proc kbdproc(kbd), mouseproc(mouse);

for(;;) {
alt {
case r = <−kbd:

if(r < 0)
terminate(nil);

/* process keyboard input */
break;

case m = <−mouse:
/* process mouse event */
break;

}
}

}

The introduction of the second input device exposes a deficiency in the termination
strategy. On end-of-file or an error, the keyboard slave process sends a negative value
to the executive process and terminates. The executive also terminates, leaving the
mouse slave process dangling. We remedy this by saving the process numbers of the
slave processes in global variables and introduce a new channel used exclusively to
communicate a termination condition. The executive adds the new channel to the selec­
tion in the alt statement, and kills all slave processes when a value is received on it:

int kbdpid, mousepid;

void
kbdproc(chan(int) kbdc, chan(int) termc)
{

byte c;
int n, fd, ctlfd;

kbdpid = getpid();
fd = open("/dev/cons", OREAD);
ctlfd = open("/dev/consctl", OWRITE);
write(ctlfd, "rawon", 5); /* set raw mode */

for(;;) {
n = read(fd, &c, 1);
if(n <= 0 || c == EOF) {

termc <−= −1;
return;

}
n = processinput(c);
if(n)

kbdc <−= n;
}

}

­ 13 ­

void
mouseproc(chan(Mevent) mc, chan(int) termc)
{

int fd, n;
byte buf[1024];
Mevent m;

mousepid = getpid();
fd = open("/dev/mouse", OREAD);
for(;;) {

n = read(fd, buf, sizeof(buf));
if(n < 0) {

termc <−= 1;
return;

}
m = decodemouse(buf, n);
mc <−= m;

}
}

void
main(void)
{

int r;
Mevent m;
chan(int) kbd, term;
chan(Mevent) mouse;

alloc kbd, mouse, term;
proc kbdproc(kbd, term), mouseproc(mouse, term);

for(;;) {
alt {
case <−term: /* kill slave processes */

postnote(PNPROC, mousepid, "kill");
postnote(PNPROC, kbdpid, "kill");
exits(nil);

case r = <−kbd:
/* process keyboard input */
break;

case m = <−mouse:
/* process mouse event */
break;

}
}

}

As in the previous example, low-level input processing is confined to the slave pro­
cesses and the executive just selects among inputs and processes the data. New input
sources can be added by allocating a channel, writing a slave process, and adding a
case to the alt statement. In this example, most of the processing takes place in the
master process. Using channel messages to represent device events insulates that pro­
cess from the details of the system interface, frees it from time constraints, and allows it
to use Alef�s channel operations to demultiplex several event streams. This structure is
common to many Alef programs that handle multiple input sources.

­ 14 ­

Asynchronous Channels

So far the channels in our examples have been synchronous: a sender blocks until
another thread of execution attempts to receive on the channel. This mode of operation
may be inappropriate; when the processing in the master process is lengthy, the key­
board slave process blocks after the first character of type-ahead.

Alef provides asynchronous channels to decouple the sending and receiving processes.
An asynchronous channel behaves like a queue with a capacity specified in the channel�s
declaration. Messages are accepted until all slots in the queue are occupied; a subse­
quent attempt to send blocks until a receiver removes a message. If the channel is of
sufficient capacity, senders never block and the sending and receiving processes exe­
cute asynchronously. The receive operation is the same for both synchronous and asyn­
chronous of channels; if a message is present, it is received, if not, the receiver blocks.
Asynchronous channels not only facilitate parallel execution but also insulate the pro­
cessing from many races.

An asynchronous channel is declared by appending a capacity specification, which looks
like an array dimension, following the channel type. Thus,

chan(int)[100] kbd;

defines an asynchronous channel with a capacity of 100 integer messages. The capacity
specification is not part of the channel type information; instead, it is an attribute of a
channel variable that is applied when the variable is allocated. If the variable is not allo­
cated, for instance, if it is assigned a previously allocated channel, it inherits the type of
that channel regardless of the type in its own declaration. This distinction allows a
channel variable to reference either synchronous or asynchronous instantiations of a
channel. The compiler accepts a capacity specification in any channel declaration, for
example, as a formal parameter or the type returned by a function, but the only declara­
tion that matters is the one governing the last allocation of the channel.

We can support type-ahead in our example by using an asynchronous channel between
the keyboard and executive processes. We need only change the keyboard channel dec­
laration in the main function; the send and receive operations and the declaration of the
keyboard channel parameter of the keyboard slave process remain the same. Support­
ing type-ahead may be justified but it is not obvious that mouse-ahead is equally desir­
able.

Tasks

In addition to processes, Alef provides a synchronously scheduled thread of execution
called a task. Every Alef process consists of one or more tasks; in the trivial case, a pro­
cess has a single task that is always selected for execution. Alef tasks are co-routines:
when one has control, other tasks in the process remain blocked until the selected task
gives up control by receiving or sending on a channel, blocking on a QLock (described
later), terminating execution, or starting another task. When no task in a process is
ready, the Alef run-time blocks until an external event makes one or more of the tasks
runnable. When a task executes a system call that blocks or takes a long time, other
tasks in the process are prevented from executing. In general, when a thread of execu­
tion can block indefinitely in a system call, it should probably be implemented as an Alef
process.

An algorithm can often be implemented using either tasks or processes. Both are ideal
for encapsulating a computation but when parallel execution and blocking considera­
tions are unimportant, tasks are usually preferable. Tasks are cheap to create and
schedule; processes are more appropriate for long-running computations where the
startup expense can be amortized. The task scheduling mechanism provides implicit
synchronization between threads of execution that cannot be guaranteed with

­ 15 ­

preemptive scheduling. Finally, tasks in the same process always share a common
address space; processes may or may not share memory.

The syntax of task creation is identical to that of process creation except the proc key­
word is replaced by the task keyword. When a task is started, control always passes to
the new task, which runs until it relinquishes control. A task terminates by returning
from its entry function or by calling terminate. When one task terminates, another
runnable task in the process is selected for execution; if no tasks are ready, the Alef
run-time blocks until a task becomes runnable. When the last task in a process calls
terminate the process itself terminates. When a task terminates, its stack is
reclaimed but other resources held by it, such as dynamic memory, locks, or open files
are not reclaimed. If a task calls exits, the process and all of its tasks terminate.
Here, all held resources, including the tasks� stack space, are not reclaimed and remain
unavailable to other processes.

In our example, we can use tasks to partition the processing in the executive process.
One task processes keyboard inputs, another handles mouse inputs, and the main
thread, the implicit task inherited at program start-up, blocks on the termination chan­
nel. The executive process becomes:

void
kbdtask(chan(int) kbdc)
{

int r;

for(;;) {
r = <−kbdc;
/* process keyboard input */

}
}

void
mousetask(chan(Mevent) mc)
{

Mevent m;

for(;;) {
m = <−mc;
/* process mouse input */

}
}

void
main(void)
{

chan(int)[100] kbd;
chan(int) term;
chan(Mevent) mouse;

alloc kbd, mouse, term;
proc kbdproc(kbd, term), mouseproc(mouse, term);
task kbdtask(kbd), mousetask(mouse);

<−term; /* main thread blocks here */
postnote(PNPROC, mousepid, "kill");
postnote(PNPROC, kbdpid, "kill");
exits(nil);

}

After starting the keyboard and mouse slave processes, the executive passes control to

­ 16 ­

the keyboard input task. That task receives on the keyboard channel; if data is present,
it is processed, if not, the task blocks and control returns to the main task. It starts the
mouse task, which receives on the channel from the mouse slave process. When that
channel is empty, control transfers either to the keyboard task, if a message is present
in the keyboard channel, or back to the main task, which immediately blocks on the ter­
mination channel. At this point, the three tasks in the process are suspended and
remain so until data is available on one or more of the channels. A task associated with
a ready channel is selected for execution and it runs until it relinquishes control. In
effect, we use the Alef run-time scheduler to simulate the operation of the alt state­
ment. The keyboard and mouse tasks are implicitly terminated when the main task calls
exits. The tasks need not be explicitly terminated. They hold no resource except the
memory occupied by their stacks and since there are no other active processes, there is
no demand for this memory and it will be freed by the system when this process termi­
nates. Notice that the keyboard and mouse slave processes require no modification; the
channels insulate them from structural changes in the executive process.

Resource Servers

The interface to many system services does not mesh well with Alef�s multi-threaded
model of computation. We have already used a process to convert a blocking system
call into a channel operation. We can apply this strategy to almost any system resource
by implementing a server for the resource in a process that communicates with clients
via channels. Not only can we multiplex the resource among several clients but we can
also implement the client interface to the resource entirely in terms of channel opera­
tions.

Consider the case of alarms in a multi-task process. Since the system provides only one
alarm per process, two tasks cannot simultaneously set alarms. Further, when an alarm
expires, it is difficult to guarantee that the proper task is selected for execution since
that requires the cooperation of the currently executing task. Finally, unlike system
calls, which return an error indication when interrupted, most Alef run-time functions,
including channel send and receive operations, absorb signals, so the application is
unlikely to see the alarm. We can solve these problems by implementing an alarm
server to administer alarms.

An alarm server is a process that accepts alarm requests on a common channel and
replies to clients on a private channel when the alarm interval expires. Alef channels
transport any Alef type and since a channel is a type, we can send the identity of the
return channel on an existing channel. A client sends the alarm server a message con­
taining the number of milliseconds until the alarm occurs and an allocated return chan­
nel. Since a channel message must be singular, we use a tuple to bundle the values.
The alarm server sends an integer value on the return channel when the alarm expires.
Notice that the alarm server does not actually generate operating system alarms that
interrupt its clients; instead, it uses channel messages to simulate the expiration of an
alarm.

The alarm server must simultaneously count down pending alarms and service new
requests on its input channel. Since it can�t count alarms while blocked in a receive
operation, it must only attempt to receive on the input channel when it knows that the
operation will not block.

The unary ? operator is a predicate returning the state of the channel supplied as its
operand. When the operator precedes the channel, it is called the can−receive operator,
and evaluates to 1 if a message is available on the channel. The postfix form of the
operator, called can−send, evaluates to 1 when it is possible to send on the channel
without blocking. Because the check of channel status and a subsequent send or
receive operation on the channel are not atomic, the can-send and can-receive opera­
tors are only reliable when there is no opportunity for transfer of control between the

­ 17 ­

execution of the predicate and the channel operation. For example, although it may
look correct, the code segment

if(?ch)
a = <−ch;

only works when there is a single receiver on the channel or when the channel connects
tasks in the same process; it is inappropriate when more than one process attempts to
receive on a channel because execution can be preempted between the test and the
receive operation. In our case this isn�t a problem because the alarm server is the only
process attempting to receive on its input channel. However, we illustrate the solution
with a general technique that accommodates multiple receivers. We achieve this by
using an alt statement and an asynchronous channel that is always full to ensure that
a receive operation will succeed. In the code fragment

chan(int)[1] dummy;

alloc dummy;
dummy <−= 1; /* fill the channel */
while(?ch)

alt {
case a = <−ch:

/* process message */
break 2; /* break from while loop */

case <−dummy:
dummy <−= 1; /* refill channel */
break;

}

the alt statement never blocks; if there is nothing available on the input channel
named ch, the case associated with the always-full channel is selected, the channel is
refilled, and the loop repeats. Eventually, either the can-receive predicate evaluates to
zero or data appears on the channel. In the latter case, the message is received in the
first case of the alt statement and the special form of the break statement termi­
nates the while loop by jumping out of two levels of nested control. Notice that the
always-full channel must be asynchronous, otherwise the thread blocks when it first
sends on the channel and never awakens.

This trick allows the alarm server to poll its input channel for new alarms while counting
down existing alarms. The alarm server looks like:

void
alarmproc(chan(tuple(int, chan(int))) alrmch)
{

uint t;
int a, dt;
chan(int)[1] dummy;
chan(int) reply;

alarmpid = getpid();
alloc dummy;
dummy <−= 1;
alist = nil;
t = msec();

­ 18 ­

for(;;) {
if(alist == nil) {

/* no alarms − get client request */
(a, reply) = <−alrmch;
addalarm(alist, a, reply);
t = msec();

} else while(?alrmch) {
alt {
case (a, reply) = <−alrmch:

addalarm(alist, a, reply);
break 2;

case <−dummy:
dummy <−= 1;
break;

}
}
sleep(1); /* sleep 1ms */
dt = msec()−t;
t += dt;

for(each alarm in alist) {
if(alarm.msec <= dt) {

/* send alarm to client */
alarm.ch <−= 1;
deletealarm(alarm);

} else
alarm.msec −= dt;

}
}

}

The alarm server maintains a list of pending alarms. When the list is empty, the server
blocks on the input channel until a request arrives; otherwise, it tests the channel before
attempting to receive. When there are pending alarms the server wakes up approxi­
mately every millisecond, calls the function msec to get the current time in millisec­
onds, and decrements the count for each alarm in the list. When a count reaches zero,
the server sends an integer on the private channel to the client and removes the alarm
from the list. The complete implementation is more complicated, involving clock wrap-
around and other details irrelevant here, but the structure of the algorithm is common
to servers that multiplex a resource among several clients.

With an alarm server we can modify our program to handle �double-click� events; for
example, a double click of a mouse button. When the mouse task in the executive pro­
cess receives an input, it sets an alarm for, say, 500 milliseconds, and uses an alt
statement to receive a message on either the alarm channel or the normal input channel.
If the alarm occurs before an input, the original event is interpreted as a single-click; if
the proper mouse event occurs before the alarm expires, the input is processed as a
double-click.

The receive loop in the mouse task is modified as follows:

­ 19 ­

void
mousetask(chan(Mevent) mc, chan(tuple(int, chan(int))) alarm)
{

Mevent m, lastm;
chan(int) dummy, ch;

alloc dummy;
ch = dummy;
for(;;) {

alt {
case m = <−mc:

if((m.buttons&0x07) == 0)
break;

if(ch == dummy) {
/* no alarm pending */
alloc ch;
alarm <−= (500, ch);
lastm = m;

} else {
task consumealarm(ch);
ch = dummy;
if(lastm.buttons == m.buttons
&& eqpt(lastm.Point, m.Point))

doubleclick(m);
else

singleclick(m);
}
break;

case <−ch: /* alarm expired */
unalloc ch;
ch = dummy;
singleclick(lastm);
break;

}
}

}

void
consumealarm(chan(int) ch)
{

<−ch;
unalloc ch;

}

We replace the receive operation with an alt statement that receives on the channel
from the mouse slave process and another channel referenced by the variable named
ch. That variable either refers to a return channel from the alarm server or a dummy
channel that is always empty. When an alarm is pending, ch refers to the return chan­
nel from the alarm server, both cases of the alt are active, and either a mouse event
message or an integer indicating an alarm timeout is received. When no alarm is pend­
ing, ch refers to the dummy channel, the second case of the alt is never selected, and
only mouse events are received. We begin by waiting for a mouse event. When a button
click occurs, we save it, allocate a new channel, send a tuple containing it and the alarm
interval to the alarm server, and set ch to refer to the new channel. When the alt
repeats, we can receive either a mouse event or an alarm expiration. If an alarm occurs,
we deallocate the return channel, process the last mouse event as a single click, and
assign the always-empty channel to ch, thereby deactivating the second case of the
alt statement. When a button click occurs before the alarm expires, we check the

­ 20 ­

mouse location and the button state to determine if it is a double-click or a single-click
and then assign the dummy channel to ch to deactivate the second case of the alt
statement. At this point we must decide what to do with the alarm that is pending in
the alarm server. We could send a message to the server canceling the alarm, but this
strategy is tricky and complicates the alarm server. Instead, we could let the alarm
expire and discard the alarm message before deallocating the channel. We choose the
second model and use a new task consumealarm to harvest the unneeded alarm.
Notice that this strategy is only appropriate when the alarm interval is approximately the
same as the event rate. For example, if events occurred thousands of times a second
and the alarm interval was on the order of seconds, we would expect to continually gen­
erate thousands of consumer tasks during normal operation. We could add alarms for
keyboard events by making similar modifications to the keyboard task.

The executive process must allocate the input channel to the alarm server, start and ter­
minate the alarm server process and pass the alarm channel to the mouse task. It looks
like:

void
main(void)
{

chan(int)[100] kbd;
chan(int) term;
chan(Mevent) mouse;
chan(tuple(int, chan(int))) alarm;

alloc kbd, mouse, term, alarm;
proc kbdproc(kbd, term), mouseproc(mouse, term),

alarmproc(alarm);
task kbdtask(kbd), mousetask(mouse, alarm);

<−term; /* main thread blocks here */
postnote(PNPROC, mousepid, "kill");
postnote(PNPROC, kbdpid, "kill");
postnote(PNPROC, alarmpid, "kill");
exits(nil);

}

This example illustrates several points. First, an always-empty channel allows selective
deactivation of a case in an alt statement. Second, an always-full channel allows us to
ensure that a channel operation will not block. Third, the ability to send a channel on
another channel allows us to implement a server that accepts requests on a common
channel and communicates with each client on a private channel. Finally, since tasks are
cheap, it is often better to use a task to consume an unwanted message than it is to can­
cel the message.

Miscellaneous Channel Topics

Channels are not only a mechanism for transferring messages between threads of exe­
cution, but also a fundamental data type of the language, and as such, can be manipu­
lated like other data types, subject to certain constraints. The most obvious restriction
is that channels cannot be initialized at compile time and must be allocated before use.
While they cannot be operands of most arithmetic and shift operators and can only be
compared for equality or inequality, channels can be operands for many other operators.
Some, like send, receive, can-send, and can-receive, apply only to channels. Others,
like assignment and comparison for equality, accept channel operands, as long as both
operands evaluate to the same type. Unary operators, such as sizeof, indirection,
and address-of also accept a channel operand. Finally, an array can contain channels
but each member must be allocated individually. For example,

­ 21 ­

chan(int)[100] ch[2];

alloc ch[0], ch[1];

declares and allocates two asynchronous channels.

Almost any type of data may be sent or received on a channel. Messages are sent by-
value, so it is expensive to send a large data structure; for efficiency, the address of a
data structure can be sent, but this introduces a dependency on the shared memory
model. Only arrays and functions cannot be sent on channels. Of course, the address
of an array or function can be sent and an array can be wrapped in an aggregate for
transport.

Abstract Data Types

An abstract data type is a complex type that is similar to a C++ class. It defines storage
for its data members and the operations, called methods, that can be performed on
them. Data members may be accessed only by member methods unless they are explic­
itly exported. Methods are known globally unless they are explicitly restricted to inter­
nal invocation. Note that the default scope of data members is opposite to that of meth­
ods.

An abstract data type is declared using an extended complex type declaration syntax.
The adt keyword replaces the aggr or union keyword; it is followed by the name of
the type, a list of its members, and prototypes of the functions implementing the type
methods. The data members and function prototypes may be specified in any order, but
conventionally the prototypes follow the declarations of all data members. An abstract
data type may not have a data member and method with the same name. Abstract data
types share most of the semantics of complex types. For example, you can declare an
array of abstract data types, take the address of one, assign it to a variable of the same
type, reference it indirectly, or pass it to a function.

In our examples the details of the mouse and keyboard device interface are isolated in
the slave processes. We can implement Mouse and Keyboard abstract data types to
formalize and restrict the interface. Usually the functions implementing the methods on
an abstract data type are kept in a single source file; for brevity, we bundle the Mouse
and Keyboard abstract types with the calling code. The declarations for the Mevent,
Mouse and Keyboard abstract data types are:

adt Mevent {
Point;
int buttons;

int fill(*Mevent, byte*, int);
};

adt Mouse {
Mevent;

extern chan(Mevent) ch;
chan(int) term;
int fd;
int pid;

Mouse* init(byte*, chan(int));
void close(*Mouse);

intern void mproc(*Mouse);
};

­ 22 ­

adt Keyboard {
extern chan(int)[100] ch;

chan(int) term;
int kbdfd;
int ctlfd;
int pid;

Keyboard* init(byte*, chan(int));
void close(*Keyboard);
int ctl(*Keyboard, byte*);

intern void kproc(*Keyboard);
};

The Mouse abstract data type declares all data and methods relating to the mouse
device. It supplies methods to initialize and close a mouse and to start the mouse slave
process, and contains an unnamed Mevent abstract type that provides a method to
decode a buffer of raw mouse data. The Keyboard abstract data type provides similar
functionality with an additional control method to set the keyboard mode. Methods pre­
ceded by the intern keyword can only be invoked by other functions of the type. The
extern keyword allows access to data members by code outside the type. We restrict
access to the functions that start the mouse and keyboard slave processes and export
the channels so the executive process can receive on them.

A method customarily expects the address of an instantiation of the abstract type as the
first parameter. Alef provides a shorthand declaration syntax that tells the compiler to
provide the address of the type instance automatically. An implicit argument is indi­
cated by preceding the name of the abstract type with an asterisk as the first formal
parameter in the method prototype. Notice that this syntax differs from that of a
pointer to the abstract type, where the asterisk follows the type name. In our example,
all methods except init expect an implicit parameter.

The promotion rules for unnamed members of a complex type also apply to unnamed
members of an abstract data type. When an abstract data type is an unnamed member
of another abstract data type, the promotion rules apply to the methods as well as the
data members of the inner member. When a method cannot be found in an abstract
type, the compiler searches its unnamed abstract data type members breadth-first for a
matching method. This promotion strategy implements a form of inheritance; if the
outer abstract type provides a method of a given name, it takes precedence, if not, it
inherits the method from a member. In the latter case the address of the inner member
is passed to the method as an implicit parameter, even when the method is invoked rel­
ative to the outer abstract type. For example, if the fill method is invoked on an
instantiation of a Mouse abstract type, the address of the unnamed Mevent member
of that type is supplied as the first argument.

A method is an Alef function with a name of the form typename.method where
typename is the name of the abstract data type. For example, the formal definition of
the initialization function for the Mouse abstract data type is Mouse.init. The
implementation of the Mouse abstract data type becomes:

int
Mevent.fill(Mevent *m, byte *buf, int n)
{

if(n < 10)
return 0;

/* decode ’buf’ into ’m’ */
return 1;

}

­ 23 ­

Mouse*
Mouse.init(byte *device, chan(int) term)
{

Mouse *m;

alloc m;
m−>fd = open(device, OREAD);
if(m−>fd < 0) {

unalloc m;
return nil;

}
alloc m−>ch;
m−>term = term;
proc m−>mproc();
return m;

}

void
Mouse.close(Mouse *m)
{

if(m−>pid)
postnote(PNPROC, m−>pid, "kill");

}

void
Mouse.mproc(Mouse *m)
{

int n;
byte buf[1024];

m−>pid = getpid();
for(;;) {

n = read(m−>fd, buf, sizeof(buf));
if(n < 0) {

m−>term <−= −1;
continue;

}
if(m−>fill(buf, n))

m−>ch <−= m−>Mevent;
}

}

We consolidate the channel allocation, slave process initialization, and termination oper­
ations in an abstract data type instead of scattering them about the executive process.
When the slave process is started with the statement

proc m−>mproc();

in the initialization method, an implicit pointer to the Mouse abstract data type is
passed as the argument. The slave process relies on the promotion rules to invoke the
fill method of the Mevent abstract type and to supply the address of the unnamed
Mevent member as the first argument to the decoding function.

The implementation of the Keyboard abstract data type is similar:

­ 24 ­

Keyboard*
Keyboard.init(byte *device, chan(int) term)
{

Keyboard *k;
byte buf[128];

alloc k;
k−>kbdfd = open(device, OREAD);
if(k−>kbdfd < 0) {

unalloc k;
return nil;

}

sprint(buf, "%sctl", device);
k−>ctlfd = open(buf, OWRITE);
if(k−>ctlfd < 0) {

unalloc k;
close(k−>kbdfd);
return nil;

}

alloc k−>ch;
k−>term = term;
k−>ctl("rawon");
proc k−>kproc();
return k;

}

void
Keyboard.kproc(Keyboard *k)
{

byte c;
int n;

k−>pid = getpid();
for(;;) {

n = read(k−>kbdfd, &c, 1);
if(n <= 0 || c == EOF) {

k−>term <−= −1;
continue;

}
n = processinput(c);
if(n)

k−>ch <−= n;
}

}

void
Keyboard.close(Keyboard *k)
{

if(k−>pid)
postnote(PNPROC, k−>pid, "kill");

}
int
Keyboard.ctl(Keyboard *k, byte *msg)
{

return write(k−>ctlfd, msg, strlen(msg));
}

­ 25 ­

A member of an abstract data type is referenced relative to a variable containing an
instantiation of the type. The variable may be the type itself or a pointer to the type
through any number of levels of indirection. The variable name is qualified with the
name of a data member or type method using the same syntax used to select members
of other complex types; the . and −> operators work as expected. A method name is
followed by a parenthesized list of arguments, for example,

Keyboard k, *kp;

k.ctl("rawon");
kp−>ctl("rawon");

invokes the ctl method of the Keyboard abstract data type in two equivalent ways.
The prototype for the ctl method specifies an implicit first parameter, so the Alef com­
piler supplies the address of the variable as the first argument; in the first case, &k; in
the second, kp.

Sometimes we wish to invoke a method when we lack an instance of the type. This usu­
ally occurs when the abstract type provides an initialization method that returns a
pointer to the initialized type. Alef provides a mechanism for referencing a method
without an instantiation of the type using the syntax .typename.method. For example,
the initialization function of the Mouse data type is invoked by .Mouse.init(args).
If the method expecting an implicit parameter is invoked in this manner, nil is sup­
plied as the first argument. A method reference of this type is equivalent to invoking
the method using a nil base address, for example, ((Mouse*)nil)−>
init(args).

All state information pertaining to an abstract data type should be stored in data mem­
bers of the type and not in global variables. The type methods can then be expressed
entirely in terms of the type instantiation supplied as an argument, allowing indepen­
dent processing of multiple instances of the type.

Since the Mouse and Keyboard abstract data types hide the details of initialization,
the executive process is simplified:

void
main(void)
{

Mouse *m;
Keyboard *k;
chan(tuple(int, chan(int))) alarm;
chan(int) term;

alloc term, alarm;

m = .Mouse.init("/dev/mouse", term);
if(m == nil)

exits("mouse");

k = .Keyboard.init("/dev/cons", term);
if(k == nil) {

m−>close();
exits("keyboard");

}

proc alarmproc(alarm);
task kbdtask(k−>ch), mousetask(m−>ch, alarm);

­ 26 ­

<−term; /* main thread blocks here */
k−>close();
m−>close();
postnote(PNPROC, alarmpid, "kill");
exits(nil);

}

The alarm server could also be implemented as an abstract data type using a similar
approach. We leave that as an exercise for the reader.

Error Handling

Alef provides three mechanisms for detecting and handling errors.

The check statement tests an assertion and aborts the process with an error message
when the assertion fails. The keyword is followed by a logical expression and an
optional string separated from the expression by a comma. If the expression evaluates
to zero, a message containing the name of the source file, the line number of the
check statement, the name of the current function, the optional string, and the last
system error message is printed on standard error and the process exits. Other pro­
cesses are unaffected. When the optional string is not specified, the string "check" is
supplied in its place. For example,

n = write(−1, buf, len);
check n == len, "write error";

prints a message of the form

test.l:7:main() write error, errstr(file not open)

The error handler is invoked indirectly through the global variable ALEFcheck,
declared as follows:

void (*ALEFcheck)(byte*, byte*);

If the default error handling strategy is inappropriate, an application can set this variable
to the address of its own error handler. The first parameter is the string containing the
file, line number and function name and the second is the optional string supplied in the
check statement. An error handler should never return; most code, including many
library functions, assumes that sequential execution cannot resume after a failed asser­
tion. Check statements can be compiled out of production code by invoking the com­
piler with the −c command line flag.

The rescue statement defines a block of code to be executed by a raise statement.
A rescue block usually contains error recovery code, but there is no formal enforcement
of this use. A rescue block is never entered by sequential execution from the statement
preceding the block; only a raise or a goto statement can cause its execution. When
a rescue block is entered, execution flows through the end of a rescue block to the
following statement. Rescue blocks are well-suited for specifying a recovery action near
the point where a resource is claimed instead of replicating the recovery at subsequent
points of error.

An optional name may follow the rescue or raise keyword. When a name is speci­
fied in a raise statement, the named rescue block is executed; otherwise the rescue
block immediately preceding the raise statement in the code is executed. Rescue
blocks may be chained; one block may contain a raise statement that transfers control
to another rescue block. Finally, rescue block names are syntactically equivalent to
labels. Their scope is the containing function, they share the name space with labels
without conflicting with variable names, and they may be the destination of a goto
statement. A rescue block may only be invoked from within the function where it is
defined.

­ 27 ­

We illustrate the use of the rescue and raise statements with a function that
searches a directory for a file beginning with a specified string and returns the name of
the file.

byte*
findfile(byte *dirname, byte *string)
{

int n, dirfd, fd;
byte *buf, buf2[512];
Dir d;

n = strlen(string);
buf = malloc(n);
rescue {

unalloc buf;
return nil;

}

dirfd = open(dirname, OREAD);
if(dirfd < 0)

raise;
rescue closedir{

close(dirfd);
raise;

}

while(dirread(dirfd, &d, sizeof(d)) == DIRLEN) {
sprint(buf2, "%s/%s", dirname, d.name);
fd = open(buf2, OREAD);
if(fd < 0)

continue;
rescue {

close(fd);
continue;

}

if(read(fd, buf, n) <= 0)
raise;

close(fd);
if(strncmp(buf, string, n) == 0) {

close(dirfd);
unalloc buf;
buf = malloc(strlen(d.name)+1);
strcpy(buf, d.name);
return buf;

}
}
werrstr("no match");
raise closedir;
return nil; /* needed to fool compiler */

}

Notice that each raise statement, except the last, chains back through the rescue
blocks, each of which closes a file descriptor or frees memory. The final raise state­
ment invokes the rescue block named closedir by name because the intervening
rescue block closes a file descriptor that is no longer open. The return statement at the
end of the function is never executed but is required to convince the compiler that the
function always returns a value.

­ 28 ­

Parallel Execution

The par statement executes the statements in its body in parallel and joins the threads
of execution at the end. In effect, par forks and executes a process for each statement
in its range and then waits for all processes to terminate before proceeding. The par
statement is useful when part of a computation can be performed in parallel and the
remainder must be single-threaded. Algorithms of this type could be implemented
using processes and channels or locks, but the modest synchronization requirements
are satisfied by the par primitive.

The par statement:

par {
statement 1;
statement 2;

...
statement n;

}

is a block containing any number of statements. Since braces can be used to group
statements, each statement can be arbitrarily complicated. The flow of execution is not
sequential; each statement is executed independently and control then transfers to the
end of the par block. Further, the order of execution is undefined. The semantics of
par ensure that the code following the body of the par block is not executed until all
statements within the block have completed execution.

All branches of a par statement share the automatic variables and parameters of the
function containing the statement. If a par statement calls a function, the stack expan­
sion is unique to the statement and is inaccessible to other statements. When the par
completes, any per-statement stack growth is reclaimed and the single thread of execu­
tion continues in the context of the current function.

The par primitive is ideal for implementing a read-ahead algorithm. Consider a pro­
gram that displays the contents of a file containing blocks of compressed image data. It
performs two compute-intensive tasks: decompressing the data on input and displaying
a large and potentially complex image. Assuming that the blocks are accessed sequen­
tially, we can decrease the screen update time on a multi-processor by overlapping the
two operations. The following Alef code sketches the algorithm:

void
main(int, byte **argv)
{

byte *active, *passive;
int fd, n;

fd = open(argv[1], OREAD);
check fd >= 0, "open error";

active = malloc(BUFSIZE);
passive = malloc(BUFSIZE);

­ 29 ­

n = decode(fd, active, BUFSIZE); /* first block */
check n > 0, "read error";
while(active != nil) {

par {
display(active, BUFSIZE);

if(decode(fd, passive, BUFSIZE) <= 0)
passive = nil;

}
(active, passive) = (passive, active);
waitforinput();

}
}

The function named decode reads, validates and decompresses the input data into the
buffer supplied as the second argument. Function display displays a buffer of
decompressed data and waitforinput solicits user input. After filling the first
buffer with data, calls to display and decode execute in parallel. The buffer switch
following the par statement is not executed until both operations complete.

Allocators

The alloc primitive and malloc library function dynamically allocate memory.
Alloc accepts a list of pointers as its operand; each pointer is set to the address of an
area that is the size of the object referenced by the pointer. Malloc returns a pointer
to an area of memory at least as big as the number of bytes specified by its single argu­
ment. Both clear the allocated memory to zero and always yield a valid address; if an
allocation cannot be satisfied, the process aborts with a check message describing the
symptoms.

Channels can only be allocated with the alloc statement; it allocates the necessary
space and initializes the channel for subsequent use. Alloc not only allocates chan­
nels and complex data types but also basic types:

typedef byte* Ptrs[5];

byte **p;
int *ip;
Ptrs *c;

alloc p, ip, c;
alloc *c[0], *c[1], *c[2], *c[3], *c[4];

allocates a byte, an integer, five pointers, and five one-byte fields and assigns the allo­
cated addresses to variables p, ip, c, and the five elements of c, respectively. Alloc
does not allocate beyond the first level when pointers have more than one level of indi­
rection; here we must explicitly allocate each member of c after allocating c itself. The
operands of alloc are evaluated left to right so the statement:

alloc c, *c[0], *c[1], *c[2], *c[3], *c[4];

is legal because the variable named c is guaranteed to be allocated before its members.

Unalloc frees a block of dynamically allocated memory; the block could have been
allocated using alloc or malloc. When its argument is a channel, unalloc waits
for pending channel operations to complete before freeing the channel and its buffers;
all other types of arguments cause unalloc to operate identically to free.

­ 30 ­

Iterators

The Alef iterator operator :: repeatedly executes the statement containing it using an
implicit incrementing counter. On each iteration, the iterator expression is replaced by
the value of the counter. The operands of the iterator statement are expressions yield­
ing values defining the range of the iteration. The expressions are evaluated once; the
left operand specifies the starting value, the right operand the terminating value. The
statement is executed with the counter successively taking on values from the starting
value to one less than the terminating value. When the counter equals the terminating
value, the iteration ceases. If the terminating value is less than the starting value, the
statement is not executed.

Iterators provide a useful shorthand when processing arrays but care should be exer­
cised to limit the range of the iteration. For example, we could specify our previous
example as

alloc c, *c[0::5];

but it would produce unexpected results; since iteration is over the entire statement, the
variable c is reallocated as each of its members is allocated. A correct implementation
would allocate c in a separate statement. An iterator is accepted wherever an expres­
sion is expected. For instance, the program

int i, a[10];

a[i=0::10] = i;
print("%d ", a[0::10]);

prints the string "0 1 2 3 4 5 6 7 8 9". The elegantly obscure

typedef float Matrix[4][4];
void mul(Matrix r, Matrix a, Matrix b){

int i, j, k;

r[0::4][0::4] = 0;
r[i=0::4][j=0::4] += a[i][k=0::4]*b[k][j];

}

multiplies two 4x4 matrices. When a statement contains more than one iterator, the
order of their evaluation is undefined. However, when the result of an iterator is
assigned to a variable, the assignment is performed before the statement is executed
and the variable may be referenced without regard to order of evaluation. In the matrix
example, the assignment of the iterator to the variable k is guaranteed to occur before
the operands of the multiply are evaluated.

QLocks and Locks

The QLock abstract data type implements blocking mutual exclusion. QLock.lock
claims a free lock or blocks the requesting thread until the lock frees. QLock.unlock
frees a lock. When more than one thread is blocked on a lock, the order of service when
the lock frees is undefined; currently a last-in, first-out model is used.
QLock.canlock returns zero if a lock is held, or claims it and returns one when it is
available. QLocks can be used to synchronize tasks in the same process; when one
task blocks contending for a QLock, control transfers to another task that is ready to
run or blocks in the Alef run-time until one is ready.

When a QLock is allocated with malloc or alloc, either as itself or as a member of a
complex type, it is properly initialized and ready for use. A process can only deallocate
a QLock when it knows that no other processes will attempt to use the lock. A QLock
should never be deallocated when it is held: the list of threads blocked on the QLock is
lost and they will never be awakened.

­ 31 ­

Locks and channels support two models of computation that are complementary and
often interchangeable. Neither synchronization model is inherently superior; each has
strengths and weaknesses that affect its suitability for a particular implementation. The
channel model is slightly slower and bigger but isolates the processing and formalizes
the flow of control. The locking model is fast and small but can scatter synchronization
details throughout the program. Message passing algorithms work well when messages
are small and they are typically easier to debug since the run-time synchronization code
has been thoroughly exercised. However, locks can also provide debugging support
and restricted semantics, especially if they are implemented as an abstract data type
within a larger abstract type. Our example programs use channels and slave processes
to multiplex mouse and keyboard input to an executive process. Many programs of this
style also manage a display. We could design the display update logic similarly, but the
output data, perhaps a bitmap, may be large enough to make message passing impracti­
cal. Instead, we could implement the display update code as a Display abstract data
type containing a QLock to synchronize accesses to the device. In this case, the con­
cept of locking the display during update is natural and easily restricted and avoids the
potentially large message passing overhead.

The QLock abstract type is implemented in terms of the Lock abstract type, which
provides spin locks. Locks are seldom needed by most applications; QLocks are suf­
ficient for all but the most specialized circumstances. Lock.lock claims an available
lock or loops on a held lock until it is freed. When several processes contend for a lock,
the lock is granted to one at random when it frees. A lock is freed with
Lock.unlock; the process freeing a lock need not be the process that claimed it.
Lock.canlock returns zero if the lock is held or claims the lock and returns one if it
is available. Locks cannot be used to synchronize tasks in the same process; since a
task does not block while contending for a spin lock, control can never transfer to
another task.

Guarded Blocks

The Alef compiler provides a syntactic mechanism to lock a critical section of code. A
guarded block allows only one thread to execute its statements at a time. When one
thread enters the block no other thread may enter until the first thread leaves. At that
point, a thread waiting to execute the block is randomly selected to claim the block and
begin executing its statements.

A block is guarded when its opening brace is preceded by an exclamation point:

<unguarded code>
!{

<code in guarded block>
}
<unguarded code>

When an exclamation point precedes the opening brace of a function, the entire function
is guarded.

The Plan 9 library function that reads the system clock:

­ 32 ­

intern int fd = −1;

int
time()
{

int t;
byte b[20];

memset(b, 0, sizeof(b));
if(fd < 0)

fd = open("/dev/time", OREAD|OCEXEC);
if(fd >= 0) {

seek(fd, 0, 0);
read(fd, b, sizeof(b));

}
t = atoi(b);
return t;

}

opens the clock file once, reads the ASCII string containing the current clock value, and
converts it to binary. Since the file is held open, the function must seek to the begin­
ning before each read; this two-step access introduces a race. If a process is preempted
between the seek and the read, another process can execute the same code, leaving the
file incorrectly positioned. When the original process regains control, the read fails. We
can combine the seek and read into an atomic operation by placing them in a
guarded block:

if(fd >= 0) !{
seek(fd, 0, 0);
read(fd, b, sizeof(b));

}

When one process enters the critical section, other processes block after the if state­
ment until the original process finishes. There is the potential for another race when
the clock is opened, but it is less critical; the file could be opened twice, wasting a file
descriptor but producing correct results. A race-free implementation of the function
guards all file manipulation:

!{
if(fd < 0)

fd = open("/dev/time", OREAD|OCEXEC);
if(fd >= 0) {

seek(fd, 0, 0);
read(fd, b, sizeof(b));

}
}

Guarded blocks and the par statement implicitly synchronize threads of execution. In
both cases care must be taken to ensure that the flow of execution reaches the synchro­
nization point at the bottom of the block. The compiler limits control transfer to the
scope of a guarded block or par statement but cannot enforce this constraint when a
subroutine is called from within a block. For example, it is inadvisable to call
terminate from within a guarded block; when another thread in the program
attempts to execute the block, it blocks forever.

The ... Formal Parameter

The formal parameter ... indicates that the function expects a variable number of
arguments. The syntax accepts ... anywhere in the parameter list, but ... consumes
all following parameters, so it only makes sense as the final formal parameter. Within

­ 33 ­

the function ... is the name of a variable of type �pointer to void� and can be used in
any context appropriate for that type. Typically ... is used as an address on the stack
from which following arguments can be extracted. The stack architecture is implemen­
tation dependent, so although Alef provides the ... syntax as a convenience, code that
uses it in this manner must still make assumptions about the stack width and argument
passing conventions.

Since ... is a pointer, it can be used in pointer arithmetic including array indexing. For
example, a function to compute the average of a variable number of integer arguments

int
avg(int n, ...)
{

int i, tot;

tot = 0;
for(i = 0; i < n; i++)

tot += ((int*)...)[i];
return tot/n;

}

casts ... to an integer pointer and then indexes beyond it to pick up each integer
argument.

Most commonly ... is not used directly but is passed as the base of a variable length
argument list to the library function doprint for formatting. The Alef function

byte *argv0;

void
fatal(byte *fmt, ...)
{

byte buf[1024], *p;

p = doprint(buf, buf+sizeof(buf), fmt, ...);
*p = 0;
fprint(2, "%s: %s\n", argv0, buf);
exits(buf);

}

prints a fatal error message prefixed by the program name and exits with an error con­
dition.

The Become Statement

The become statement transfers control in one of two ways. If its operand evaluates to
anything other than a function, become behaves as a return statement yielding the
result of the evaluation. When the operand is a function returning exactly the same type
as the current function, the current function is replaced by the operand function and
control is transferred to the beginning of that function. There is a crucial difference
between a subroutine call and this form of function invocation: the former creates a new
subroutine context on the stack before transferring control; the latter replaces the cur­
rent function context with the new context and transfers control. When a function
invokes itself or when several functions invoke each other via mutual recursion using
become, the computation runs in constant space. When used in this form, the
become statement is useful for implementing functional style programs.

We can use the become statement to implement a finite state machine that runs in con­
stant space. Suppose we have a state machine with four states (A, B, C, D), three inputs
(1, 2, 3) and the following transitions:

­ 34 ­

state/input 1 2 3___________________________

A A B C___________________________
B B A B___________________________
C A B D___________________________
D D D D___________________________








































The machine starts in state A and continues until reaching the terminal state, D. As it
passes through each state, the state name is printed. The following Alef program imple­
ments this state machine:

void stateA(chan(int));
void stateB(chan(int));
void stateC(chan(int));

int readcpid;

void
readc(chan(int) c)
{

int fd, fd2;
byte ch;

readcpid = getpid();
fd = open("/dev/cons", OREAD);
fd2 = open("/dev/consctl", OWRITE);
check fd >= 0 && fd2 >= 0, "keyboard open";
write(fd2, "rawon", 5);
for(;;) {

check read(fd, &ch, 1) == 1, "read error";
c <−= ch;

}
}

void
stateA(chan(int) c)
{

print("A");
switch(<−c) {
default:
case ’1’: become stateA(c);
case ’2’: become stateB(c);
case ’3’: become stateC(c);
}

}

void
stateB(chan(int) c)
{

print("B");
switch(<−c) {
default:
case ’3’:
case ’1’: become stateB(c);
case ’2’: become stateA(c);
}

}

­ 35 ­

void
stateC(chan(int) c)
{

print("C");
switch(<−c) {
default: become stateC(c);
case ’1’: become stateA(c);
case ’2’: become stateB(c);
case ’3’: print("\n"); /* terminal state */

break;
}
if(readcpid)

postnote(PNPROC,readcpid, "kill");
exits(nil);

}

void
main(void)
{

chan(int) c;

alloc c;
proc readc(c);
stateA(c);

}

Of course, we could implement this simple example with a transition matrix and a recur­
sive become statement, but we choose this form to emphasize the flow of control.

Alef Libraries

The Alef system library libA.a corresponds to the Plan 9 C library libc.a. Most
Alef functions in libA.a are functionally identical to their C language counterparts.
Occasionally, the names of complex types or their members vary; the Alef header file
alef.h is the definitive record of interfaces and system aggregate names. Auxiliary
Alef libraries provide regular expression matching, network interfaces, and graphics
operations similar to corresponding C libraries. In general, the manual pages for the C
library functions accurately describe the functioning of their Alef counterparts.

The Alef buffered I/O library, libbio.a, is the only library that differs substantially
from the C library of the same name. In the Alef implementation, the Biobuf structure
is implemented as an abstract data type providing buffered I/O operations. Header file
<bio.h> declares the abstract data type and its methods. With the exception of the C
function getd, which has no Alef counterpart, the Alef Bio methods are functionally
similar to the C library functions. The names of the methods differ slightly; the leading
�B� of the C language function is deleted. Most Alef Bio methods expect an implicit
parameter, so the first argument of each C function is not needed. Finally, unlike the C
version of the library, the Alef package supports parallel execution. See the manual
page for details.

Miscellaneous Features

There is no USED compiler pseudo-op in Alef as there is in the Plan 9 C compilers.
Unreferenced formal parameters are indicated by discarding the parameter name in the
function definition. This action suppresses the �declared but not used� warning issued
when a program is compiled with the ‘−w’ flag. For example, the main function defini­
tion

­ 36 ­

void
main(int, byte**)
{

...
}

can be used for a program that does not process the command line.

Two global variables control the creation of Alef tasks and processes. They contain
default values that are appropriate for most Alef programs, but may be overridden for
unusual applications. The integer variable ALEF_stack contains the number of bytes
of stack space allocated for each Alef task or process. The default value is 16,000
bytes. If this figure is too small or too large, set ALEF_stack to the desired value
before executing the task or proc statement creating the thread.

The variable ALEF_rflags contains a bit mask specifying the resources inherited by
an Alef process. Appropriate values for Plan 9 are described in the fork(2) manual page.
By default, ALEF_rflags contains the value RFPROC|RFMEM|RFNOWAIT specifying
that the processes share data segments and that the new process is not a child of the
original process. The SGI Unix version of Alef uses the values given in the sproc(3) man­
ual page. By default, the PR_SFDS|PR_SADDR flags specify that processes share data
segments and file descriptors. Processes are always disassociated from each other in
the Unix implementation; there is currently no way to change this behavior.

The default resource specification works well for Alef programs that have minimal inter­
action with the external environment. However, the default behavior may be inappropri­
ate when the Alef process model does not mesh with that of the system. Consider an
Alef program that emulates the action of a shell: it reads a command, executes it in a
child process, and waits for its termination. If the command is started using the proc
statement, the default resource specification is inappropriate: the processes shouldn�t
share memory and they must retain a parent-child relationship. The program should
set ALEF_rflags to the desired value, execute the proc statement, wait for the child
to terminate, and then reset ALEF_rflags to the default state.

