### **Assembling Smart Farm**





















Take out the Plant Growth LED from the kit (1)



2.1. Assembling the sensor in the frame



① LED's Red jumper cable is (+) pole

② LED's Black jumper cable is (-) pole







- Remove the sticker from the back of the Plant Growth LED.
- 2 Attach the Plant Growth LED to the LED part on the back of Frame 1.







2.1. Assembling the sensor in the frame



### Fix the relay module to the frame with M3 bolts/nuts.

Connect the bolts/nuts to the lower two holesand the top right holes on the relay module.



1

2.1. Assembling the sensor in the frame





(2)

- Remove sticker tape on the breadboard and
   Attach it to the part that says 'Breadboard' on the frame.
- Secure the R3 board with M3 bolts/nuts.
   \* connect the bolts/nuts to the lower two holes and the top right holes on the board.

2.2. Assembling the front side of the Smart Farm





- Prepare the Smart Farm's front frame and LCD frame.
- Place the frame to fix the LCD on the back of the front frame

(1)

2.2. Assembling the front side of the Smart Farm



② Fix using M3 bolts/nuts.

If the letters on the back of the LCD module
 are in the right direction, it is in the correct
 direction.





2.2. Assembling the front side of the Smart Farm





 Connect to the four pins of the LCD module using four female-male jumper wires.

※ No problem even if you use jumper wire of a different color from the picture.

2.2. Assembling the front side of the Smart Farm





2.3. Assembling the back side of the Smart Farm





2.4. Assembling the left/right side of the Smart Farm







2.4. Assembling the left/right side of the Smart Farm



 Prepare a support frame without an imprinted picture and connect it to the grooves on the legs.

2.4. Assembling the left/right side of the Smart Farm





### **2. Assembling Frame** 2.5. Completing Smart Farm





### When the glue dries, the basic form is completed



### Assembling Frame Extended type



 ① Expand the kit using 'Kit connection part' and 'height extension part' among Smart Farm's frames.







### **2. Assembling Frame**2.6. Extended type





- Connect the height extension part to the Smart Farm's legs at each corner to extend the height.
- ② After extending the legs, connect the support frame to the length extension part.







 Using kit connection part, place the Smart
 Farm side by side and fit into the grooves on the sides to attach multiple Smart Farms.

### **Connecting R3 board** with Sensor Module





3.0. Breadboard

|    | ABCDE                                 | FGHIJ         |
|----|---------------------------------------|---------------|
|    |                                       |               |
| 11 |                                       |               |
| 11 | · · · · · · · · · · · · · · · · · · · |               |
| II |                                       | •••••         |
| II | 1 0-0-0-0                             |               |
| TT |                                       | · · · · · ·   |
|    | 6-0-0-0                               |               |
| II | · · · · · · ·                         | []            |
| II | 00000                                 |               |
| II |                                       | ••••• 10 []   |
| II | *****                                 |               |
| TT | *****                                 |               |
|    |                                       |               |
| II |                                       | []            |
| II | 15 0 0 0 0 0                          |               |
| II |                                       | []            |
| II |                                       | []            |
| TT |                                       |               |
|    | 0-0-0-0                               |               |
| II |                                       |               |
| II |                                       | []            |
| II | *****                                 |               |
| II | 6-6-6-6                               | []            |
| TT | e-e-e-e                               | · · · · · · · |
|    |                                       | •••••         |
| II |                                       |               |
| 11 |                                       | I             |
|    | *****                                 | I             |
| 11 | *****                                 | ••••• I       |
|    |                                       | eeeee 30      |
|    | ABODE                                 | FOHIO         |

① Connect the (-) and (+) poles of the breadboard vertically.
 (Red, Blue)

② Connect the rest horizontally.

(Green)

3.1. Connecting (-) pole and (+) pole to breadboard





- Plug the male jumper wire into the GND of the R3 board and connect the other side to the (-) wire of the Breadboard.
- Plug the male jumper wire into 5V of the R3
   board and connect the other side to the (+)
   side of the Breadboard.

3.2. Connecting LCD



### \* I2C LCD

### ① Connect the LCD module and R3 board.

LCD's GND → (-) wire of Breadboard LCD's VCC → (+) wire of Breadboard LCD's SDA → A4 pin of R3 board LCD's SCL → A5 pin of R3 board

3.3. Connecting Soil Humidity Sensor



### **※** Soil Humidity Sensor



After directly connecting the Soil Humidity
 Sensor module to the breadboard, connect it
 to the R3 board using a jumper wire.

Hamilton Buhl

Soil Humidity Sensor's VCC → Breadboard's (+) wire Soil Humidity Sensor's GND → Breadboard's -wire Soil Humidity Sensor' sAO → R3 board's A0 pin

3.4. Connecting Photoresistor



### **\*** Photoresistor



After directly connecting the Photoresistor
 Sensor to the breadboard, connect it to the
 R3 board using a jumper wire.

Photoresistor's S pin  $\rightarrow$  R3 board's A1 pin Photoresistor's + pin  $\rightarrow$  Breadboard's (+) wire Photoresistor's - pin  $\rightarrow$  Breadboard's (-) wire



3.5. Connecting temperature-humidity sensor



### **\*** Temperature-humidity sensor



 After directly connecting the temperaturehumidity sensor to the breadboard, connect it to the R3 board using a jumper wire.

Temperature-humidity sensor's - pin → Breadboard's (-) wire Temperature-humidity sensor's S pin → R3 board's 4 pin Temperature-humidity sensor's + pin → Breadboard's (+) wire





### **%** Relay module



 Connect the left pin of the relay module to the Breadboard and R3 board first.

> Relay module's S pin → R3 board's 3 pin Relay module's (+) pin → Breadboard's (+) wire Relay module's (-) pin → Breadboard's (-) wire

- ② Connect the right pin of the relay module to the R3 board. Relay module's COM pin → R3 board's VIN pin
- ③ Among the screws on the right side of the relay module, unscrew the NO pin screw, insert the red jumper wire of the LED, and tighten the screw to fix it.

Connect a jumper wire of the plant growth LED to the R3 board. Plant Growth LED's Jumper wire  $\rightarrow$  R3 board's GND pin



3.7. Completed circuit diagram

### \* Notice

When making modifications to th e circuit, make sure to disconnect the power source (USB cable or ad apter) connected to the board.





### Preparing the environment for Arduino IDE





- 4.1. Installing Arduino IDE
- Access [<u>https://www.arduino.cc/en/main/software</u>]
- Download the Arduino IDE for Window.



4.1. Installing Arduino IDE

- Click JUST DOWNLOAD
- Run [.exe file] and install the program.









4.2. Installing CH340 Driver



- ① Go to https://www.hamiltonbuhl.com/ teacher-resource
- ② Click the Smart Farm LED GrowLight System with Arduino link.
- ③ Click on the relevant driver needed for your device.



X

확 인

- 4.2. Installing CH340 Driver
- Download the Driver CH34x\_Install\_Windows\_v3\_4.EXE
- "Run the .exe and click the **INSTALL** button to install the driver.

| DriverSetup(X64) —                                                                      | ×                                     |    |
|-----------------------------------------------------------------------------------------|---------------------------------------|----|
| Device Driver Install / UnInstall                                                       |                                       |    |
| Select INF CH341SER.INF   INSTALL WCH.CN UNINSTALL UNINSTALL USB-SERIAL CH340 UNINSTALL | DriverSetup     Driver install succes | s! |
| HELP                                                                                    |                                       |    |



- 4.3. Installing sensor Library
- Download the files DHT.zip Emotion.zip LiquidCrystal\_I2C.zip
- Do not unzip the zipped file. After running Arduino IDE, on the top menu [Sketch → Include Libraries → Add .ZIP Library].

| 🥺 sketch_                                | _sep21a   Arduino       |                   |                  |              |   |
|------------------------------------------|-------------------------|-------------------|------------------|--------------|---|
| file Edit                                | Sketch Tools Help       |                   |                  |              |   |
|                                          | Verify/Compile          | Ctrl+R            |                  |              | Q |
| sketch_ap                                | Upload                  | Ctrl+U            |                  |              |   |
|                                          | Upload Using Programmer | Ctrl+Shift+U      |                  |              | _ |
| void setup                               | Export compiled Binary  | Ctrl+Alt+S        |                  |              |   |
|                                          | Show Sketch Folder      | Ctrl+K            |                  |              |   |
| , put                                    | Include Library         | NOUT OTICE:       | Manage Libraries | Ctrl+Shift+I |   |
| ſ                                        | Add File                |                   |                  |              |   |
|                                          |                         |                   | Add .ZIP Library | *            |   |
| void loop() {                            |                         | Arduino libraries | •                |              |   |
| // put your main code here to run repeat |                         | Bridge            |                  |              |   |
| , par                                    | your main couc here, to | runnepeut         | EEPROM           |              |   |
|                                          |                         |                   | Esplora          |              |   |



4.4. Compiling smart farm Source Code

- Download the files smart\_farm.ino
- Run the .ino file and If a notification window like "Do you want to move the file?" pops up, select "OK"





4.4. Compiling smart farm Source Code



### Source Code





5.1. Adding library and setting variables

|   | smart_farm_test                                                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ð | #include <wire.h><br/>#include <liquidcrystal_i2c.h><br/>#include <dht.h><br/>#include <emotion_farm.h></emotion_farm.h></dht.h></liquidcrystal_i2c.h></wire.h> |
| 2 | //Sensors<br>#define relayPin 3<br>#define cdsPin A1<br>#define DHTPIN 4<br>#define DHTTYPE DHT11<br>#define soilmoisturePin A0                                 |
| 3 | //objects creation<br>LiquidCrystal_I2C lcd(0x27, 16, 2);<br>DHT dht(DHTPIN, DHTTYPE);                                                                          |
| 4 | //variables to output a string<br>char str_M[10];<br>char str_T[10];<br>char str_H[10];                                                                         |
|   |                                                                                                                                                                 |

① Add a library of sensors to use for Smart

Farm.

- Set the input/output pin of the sensors to be used for parameters.
- ③ The LCD module and the temperaturehumidity sensor use the library to create objects.
- ④ Create a string array to output sensor

measurements on the LCD.



5.2. Setting Input/Output & LCD Initial Value

# smart\_farm\_test void setup() { Serial.begin(9600); pinMode(relayPin, OUTPUT); pinMode(cdsPin, INPUT); pinMode(soilmoisturePin, INPUT); //print intro on LCD lcd.begin(); lcd.clear(); lcd.noBacklight(); delay(500); lcd.backlight();

2

1)

Icd.clear(); Icd.noBacklight(); delay(500); Icd.backlight(); delay(500); Icd.setCursor(2,0); Icd.print("SMART"); delay(1000); Icd.setCursor(8,0); Icd.print("GARDEN"); delay(1000); Icd.setCursor(0,1); Icd.setCursor(0,1); Icd.print("BP LAB CodingEdu"); delay(1000); Icd.clear();

- Set the serial communication settings and the input and output of sensors within the setup() function.
- ② Display the intro screen of Smart Farm on the LCD.



5.3. Declaring special characters

### 

1

### smart\_farm\_test

// Add special characters and emojis added as libraries
lcd.createChar(0, temp);
lcd.createChar(1, C);
lcd.createChar(2, humi);
lcd.createChar(3, Qmark);
lcd.createChar(4, water);
lcd.createChar(5, good);
lcd.createChar(6, wind);

 Assign special characters and emoticons added through the library using the LCD library.
 (Up to 8 possible)



2

5.4. Displaying sensor value measurement & soil humidity value

### $\langle \rangle \rangle$ smart\_farm\_test void loop() { //get sensor values int cdsValue = analogRead(cdsPin); int soilmoistureValue = analogRead(soilmoisturePin); int soilmoisture\_per = map(soilmoistureValue, 170, 1023, 100, 0); unsigned char h\_Value = dht.readHumidity(); unsigned char t\_Value = dht.readTemperature(); //Output soil moisture value to LCD lcd.setCursor(1,0); lcd.print("MOIST:"); sprintf(str\_M, "%03d", soilmoisture\_per); lcd.print(str\_M); lcd.setCursor(10,0); lcd.print("%");

- In loop(), measure the values of the sensors, and save them in parameters.
   To express soil humidity values in %, use the map function to set the range.
  - (Voltage value → Convert to %)
  - Get soil humidity value on LCD.



(1)

5.5. Displaying temperature/humidity values

### smart\_farm\_test //Display the temperature value to the LCD lcd.setCursor(1,1); lcd.write(0); sprintf(str\_T, "%02d", t\_Value); lcd.setCursor(3,1); lcd.print(str\_T); lcd.write(1); //Display the air humidity value to the LCD. lcd.setCursor(7,1); lcd.write(2); 2 sprintf(str\_H, "%02d", h\_Value); lcd.setCursor(9,1); lcd.print(str\_H); lcd.print("%");

- Display the temperature value to the LCD. (1)
- Display the air humidity value to the LCD. 2



5.6. Growth LED on/off according to the illuminance sensor value

## smart\_farm\_test //Growth LED on/off according to the illuminance sensor value if(cdsValue < 400){ digitalWrite(relayPin, LOW); } else if(cdsValue >= 400){ digitalWrite(relayPin, HIGH); }

 Using the illumination value being measured, operate the growth LED connected to the relay module.



5.7. Emoji display on LCD according to soil humidity value

|   | smart_farm_test                                                                                                                                                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <pre>//Emoticon displayed on LCD according to soil moisture value if(soilmoisture_per &gt;= 0 &amp;&amp; soilmoisture_per &lt; 30){     lcd.setCursor(13,0);     lcd.write(3);     lcd.setCursor(14,0);     lcd.write(4);   }</pre> |
| 2 | else if(soilmoisture_per >= 30 && soilmoisture_per < 70){<br>lcd.setCursor(13,0);<br>lcd.print(" ");<br>lcd.setCursor(14,0);<br>lcd.write(5);<br>}                                                                                  |
| 3 | <pre>else if(soilmoisture_per &gt;= 70){     lcd.setCursor(13,0);     lcd.write(3);     lcd.setCursor(14,0);     lcd.write(6);     }     Serial.print(cdsValue);     Serial.println(soilmoisture_per);     delay(500);</pre>        |

- Using the humidity value being measured, when
   the soil humidity is 0% to 30%, an exclamation
   mark and a water drop emoticons are displayed.
- ② When the soil humidity is between 30% and 70%, a smiling expression is displayed.
- ③ Using the humidity value being measured, when the soil humidity is over 70%, an exclamation mark and a pinwheel emoticons are displayed.