
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Base64 Can Get You Pwned
Base64 is an encoding scheme originally designed to allow binary data to be represented as ASCII text.
Widespread in its use, base64 seems to provide a level of security by making sensitive information difficult
to decipher. In reality, the use of base64 provides a significant advantage to attackers while providing
minimal benefit to defenders. The use of base64 can result in the disclosure of passwords, bypass of data
leakage protection systems and can even be used to create a one click, obfuscated and self--?containe...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/632

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

	

	

Base64 Can Get You Pwned

GIAC (GCIA) Gold Certification

Author:	
 Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Advisor:	
 David	
 Shinberg	

Accepted:	
 April	
 13th	
 2011	

Abstract	

Base64	
 is	
 an	
 encoding	
 scheme	
 originally	
 designed	
 to	
 allow	
 binary	
 data	
 to	
 be	

represented	
 as	
 ASCII	
 text.	
 	
 Widespread	
 in	
 its	
 use,	
 base64	
 seems	
 to	
 provide	
 a	
 level	
 of	

security	
 by	
 making	
 sensitive	
 information	
 difficult	
 to	
 decipher.	
 	
 In	
 reality,	
 the	
 use	
 of	

base64	
 provides	
 a	
 significant	
 advantage	
 to	
 attackers	
 while	
 providing	
 minimal	

benefit	
 to	
 defenders.	
 	
 The	
 use	
 of	
 base64	
 can	
 result	
 in	
 the	
 disclosure	
 of	
 passwords,	

bypass	
 of	
 data	
 leakage	
 protection	
 systems	
 and	
 can	
 even	
 be	
 used	
 to	
 create	
 a	
 one	

click,	
 obfuscated	
 and	
 self-­‐contained	
 cross	
 site	
 scripting	
 attacks.	
 	
 Because	
 of	
 these	

risks,	
 detecting	
 base64	
 usage	
 on	
 a	
 network	
 should	
 be	
 an	
 important	
 part	
 of	
 any	

comprehensive	
 security	
 program.	
 	
 Unfortunately,	
 there	
 is	
 a	
 problem;	
 base64	
 is	

almost	
 impossible	
 to	
 detect	
 accurately	
 using	
 traditional	
 methods.	
 	
 This	
 paper	

provides	
 an	
 overview	
 of	
 the	
 base64	
 problem,	
 and	
 more	
 importantly,	
 outlines	
 a	

methodology	
 that	
 can	
 be	
 used	
 to	
 promote	
 base64	
 detection	
 using	
 the	
 Snort	

intrusion	
 detection	
 system.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 2
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

1. Introduction
Helix Pharmaceuticals is worried about security. In the cutthroat world of multi-

billion dollar pharmaceutical companies, industrial espionage is a significant concern. In

addition, political and social activists continually attempt to disrupt business as

retribution for perceived injustices. As a result, Helix takes information security

extremely seriously. Their security program consists of numerous protective and

detective controls including the use of extremely strong passwords, data leakage

protection (DLP) solutions, network intrusion detection systems (NIDS), web filtering

and email security solutions. The controls in place were deemed, by the Chief Security

Officer, to be adequate until they discovered that their strong passwords were

compromised, their DLP and IDS were evaded and their web security controls were

bypassed. After a thorough investigation, it was determined that one simple technology

was the cause of it all – base64. This story is fictional but the concepts are real and

deserve the attention of every information security department.

Base64 is a commonly used encoding scheme originally designed as a way to

represent binary data in an ASCII text format. Like almost every aspect of computer

technology today, base64 if not used properly, can result is increased security risk. As

mentioned in the story about Helix, attackers can also use it as a method to obfuscate

and/or execute their attacks, evade detection and to bypass otherwise strong controls. To

mitigate the risks associated with use of base64, it is important to understand what base64

is, how it is used, how it is abused and how to detect its use in modern computing

environments.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 3
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

2. Base64 Overview
2.1. Encoding vs. Encryption

When it comes to obscuring data, there are really three different approaches

commonly discussed: steganography, encryption and encoding. Steganography, or

“stego”, is a process by which data is hidden from observers. Herodotus documented one

of the earliest examples around 440 BC. He tells the story of Histiaeus who shaved the

head of his most trusted slave and tattooed a message in it. Once the slave’s hair had

grown back, the message was hidden. (Perera, 2011) When the messenger got to their

final destination, their head would be shaved thereby disclosing the message. In today’s

modern age of computing, a similar effect is achieved by changing the least significant

bits of each byte of an image file, for example. In pure steganography, the data is not

changed in any way, but is simply hidden.

The following two pictures look similar. The one on the left is the original. The

one on the right has had data injected into it using a program called iSteg. To the naked

eye, there are few, if any, visible differences between these pictures, however if the

second picture were fed into the iSteg program, the original text would be revealed.

Original Picture Stego’d Picture

Original Text Un-Stego’d Text

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 4
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Encryption is an entirely different method of obfuscation but rather than hiding

the fact that a message exists, like stego, encryption attempts to hide the meaning of the

message. One of the simplest forms of encryption is a rotational cipher where the letters

of the alphabet are shifted. A rotation of 3 or ROT-3 would result in two alphabets, the

true alphabet, in which the original message is written and the shifted alphabet. The

following shows a typical ROT-3 scheme.

True: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Shifted: CDEFGHIJKLMNOPQRSTUVWXYZAB

Using this ROT-3 scheme, the letter C would be used in place of A so the word

CAR would be encrypted as ECT and the word HOUSE would be encrypted as

KQWUG. This is, of course, a very basic encryption scheme. Modern cryptographic

schemes use sophisticated combinations of substitution and transposition against blocks

or streams of data to come up with ciphertext that is difficult, if not impossible to convert

back to the original plaintext without the proper key. Encryption is an effective way to

protect the confidentiality of data.

The following table shows the same text encrypted using the same encryption

scheme but using different keys. Encrypting data results in a binary, rather than a text

file thus the binary results have been encoded using base64 to make the readable.

Clear Text Algorithm Key Base64 Cipher Text

Hello! DES

Test OBfxMpyn7oY=
Test1 5Rcw8GZ+/QM=

TestTest q2a0ZkvgMeM=
test uy8XtiCOto0=

As you can see, other than the trailing equal sign (a result of base64 padding),

different keys used to encrypt the same source text using the same algorithm result in

vastly different encrypted or cipher texts. Decrypting the cipher text without the key is

ranges from difficult to virtually impossible depending on the strength of the encryption

algorithm.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 5
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Encoding may seem like encryption in that data gets changed from one form to

another and the encoded text does not look like the original. Encoding, however, does

not use substitution and transposition based on a secret key. Rather, encoding is the

process of displaying data in another format. In the world of computers, the most

common form of display suitable for humans to read is the American Standard Code of

Information Interchange or ASCII. ASCII includes the letters and numbers we read

every day plus some control characters such as backspace and tab. Thus all of the letters,

spaces and punctuation written in this document so far are representations of ASCII text.

In the world of computers however, ASCII is not the only way of encoding or

representing data. In its most basic form, a single ASCII character is stored on the

computer as a single byte of data that can also be represented as binary, octal, decimal or

hexadecimal. The following table shows the various encodings of some common ASCII

characters:

Glyph Hex Dec Oct Binary
A 0x41 65 101 100 0001
a 0x61 97 141 110 0001
! 0x21 33 041 010 0001

Backspace 0x08 8 010 000 1000

Based on this, a simple word like Cat can be represented as follows:

• ASCII: Cat
• Hexadecimal: 0x43 61 74
• Decimal: 67 97 116
• Octal: 103 141 164
• Binary: 01000011 01100001 01110100

All of these encodings spell Cat and as long as a recipient knows enough to

decode the message, they can. The fact that the message may be encoded provides no

assurance of confidentiality other than relying on the fact that any given attacker may not

be able to determine the method of encoding. Unfortunately, as you can see from the

example above, many types of encoding often used in the computing industry are fairly

easy to identify.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 6
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Like ASCII, hex, octal and binary, base64 is an encoding scheme. Specifically,

base64 was designed as a means to represent binary data as ASCII text using a

numbering system consisting of 64 digits. This may seem difficult to understand, but it is

fairly simple. We typically interact with numbering systems with 10 digits; 0 through 9.

This is a base10 system. Binary, a base2 numbering system, has 2 digits; 0 and 1.

Hexadecimal is a base16 system using 0 through 9 plus a, b, c, d, e and f for its digits.

Base64 typically uses 0 through 9, a through z and A through Z for the first 62 digits of

the system. Different variations of base64 use different characters for the final 2 digits.

Just as ASCII and binary can be used to represent data, so can base64. The

palindrome “Was it a car or a cat I saw” would be represented as

“V2FzIGl0IGEgY2FyIG9yIGEgY2F0IEkgc2F3”. As you can see, the source phrase

reads the same forwards as it does backwards but this is not the case in the encoded text.

While this may seem “secure” the fact that you can simply paste this text into an online

base64 decoder and recover the original text illustrates the weaknesses of base64 as a

security mechanism.

2.2. Common Use
Base64 is used virtually everywhere. The following are some common

applications that make use of base64.

• Basic authentication to web sites. When this type of authentication is used,

the username and the password are separated by a colon, concatenated and the

results encoded using base64. (Franks, 1999)

• Transfer of binary data via mediums such an email, as a replacement for

uuencode. (Freed, 1996)

• Evasion of basic anti-spamming tools. (Craig, 2007)

• Encoding characters strings in LDAP LDIF or files (Good, 2000)

• Embedding binary data in an XML file

• Encoding binary files, such as images, within scripts or HTML to avoid

depending on external files. (Coyier, 2010)

• Communicating encrypted cookie information (Prabhakar, 2011)

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 7
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Of these uses, only a few should be considered both legitimate and appropriate.

Using basic web authentication, for example, should be avoided as it risks disclosing the

username and password to an attacker. Malicious use of base64 to evade anti-spam

technologies is obviously not recommended. The remaining use cases are but should be

considered suspect for a variety of reasons that will be discussed in detail throughout this

document.

2.3. Identification and Decoding
The characteristics that make up a base64 encoded string are fairly simple; it will

typically contain letters (A-Z and a-z), numbers (0-9) and the characters “/”, “+” and “=”

where the equal sign, if found, will always be found at the end of the string. Base64

strings usually contain a multiple of 4 characters (e.g. 4, 8, 12, 16, etc.). In such cases,

the minimum size for a base64-encoded string is 4 characters. If the source string is not

long enough to generate an output of 4 characters, one or two equal signs will be added

for padding. This padding is found in most base64 encoded strings where the encoding

does not generate a number of characters that is divisible by 4, thus you often see either

one or two equal signs at the end of base64 encoded data. Based on this definition

however, the words “data”, “Data” and “Database” are all potentially valid base64

(although they decode to random binary data) making positive validation of base64 data

difficult. Making things worse, base64 does not always use the special characters / and +.

In some implementations of base64 a number of other special characters are used

including the dash (-), the underscore (_), the period (.), the colon (:), and the exclamation

point (!). In addition, some implementations of base64 don’t use padding. As a result,

base64 can contain any combination of letters (upper and lower case), numbers and

various special characters (/+-_:!) that may or may not have one or two equal signs at the

end. Needless to say, detecting base64 in your organization can be difficult.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 8
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

There are a number of methods to determine whether a specific set of data is a

valid base64 encoded string, but determining whether it was actually the result of base64-

encoding is virtually impossible by any means other than trying to decode it. Fortunately,

in many cases, detecting base64 encoding is not really desirable as such encoding has

numerous legitimate uses. What we are often concerned about is the use of base64 to

“secure” authentication credentials and that can be detected using, for example, Snort as

seen in the following Emerging Threats rule:

alert tcp $HOME_NET any -> any $HTTP_PORTS (msg:"ET POLICY Outgoing
Basic Auth Base64 HTTP Password detected unencrypted";
flow:established,to_server; content:"|0d 0a|Authorization|3a 20|Basic"; nocase;
content:!"YW5vbnltb3VzOg=="; within:32; classtype:policy-violation;
reference:url,doc.emergingthreats.net/bin/view/Main/2006380;
reference:url,www.emergingthreats.net/cgi-
bin/cvsweb.cgi/sigs/POLICY/POLICY_Basic_HTTP_Auth; sid:2006380;
rev:10;)

This rule is fairly straightforward, particularly when you remove the messages, ID

numbers, references and revision information as follows:

alert tcp $HOME_NET any -> any $HTTP_PORTS (flow:established,to_server;
content:"|0d 0a|Authorization|3a 20|Basic"; nocase;
content:!"YW5vbnltb3VzOg=="; within:32;)

This rule is looking at TCP traffic on $HTTP_PORTS (a variable used to define

the ports on which web traffic is expected) for specific content. In this case, it is looking

for bytecode (hex representation of binary data) of “0d 0a”, the word “Authorization”,

bytecode of “3a 20” and the word “Basic”. None of the above is case sensitive. Adding

further specificity, any communications with “YW5vbnltb3VzOg==” found within 32

byes of the previous match would be excluded. (The string starting with YW5 is base64

encoding for “anonymous:”. This approach identifies “basic web authentication”, one of

the most common uses for base64 and one that almost always involves usernames and

passwords.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 9
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Detecting basic web authentication may be interesting but it is not always

sufficient. User credentials are not the only pieces of sensitive information that can be

encoded using base64. Consider the pharmaceutical company that deployed a complex

Data Leakage Protection solution in an effort to protect their newest multi-billion dollar

drug. Their DLP solution is configured to watch for a specific string of characters;

“super secret formula X+3(Y)/437*Q”. An insider seeking to bypass that system could

simply send it out as “c3VwZXIgc2VjcmV0IGZvcm11bGEgWCszKFkpLzQzNypR”

which is the base64 encoded version of that same formula. Unless the DLP solution has

been configured to look for the base64 encoded string, it will be missed.

As discussed previously, determining that a given data string is actually base64 is

not possible without attempting to decode it. That said, identifying strings that are

consistent with base64 encoding can be done using Perl Compatible Regular Expressions.

This must be done carefully as this approach is subject to significant false positive or

false negative results. For example, a regular expression “[0-9a-zA-Z+/=]{20,}” could

be used as it looks for a string of characters that is at least 20 characters long containing

letters, numbers or the special characters listed. When analyzing typical human-readable

text, this approach may be reasonable as 20 character words are uncommon, however a

long URL such as http://www.something.com/something/somethingelse/somethingmore,

would result in a positive match to the regex. Another problem with this approach is that

it only looks for encoded text of 20 characters or more. This would fail to detect an

encoded password (for example) that is as long as 12 characters. While this approach has

a role in an overall base64 detection scheme, because of its weakness, another, more

specific approach is necessary.

The following regular expression is more complex but does a more

comprehensive job of identifying base64

• (?:[A-Za-z0-9+/]{4}){2,}(?:[A-Za-z0-9+/]{2}[AEIMQUYcgkosw048]=|[A-

Za-z0-9+/][AQgw]==)”

This can be more easily understood by breaking it down into its individual parts.

Basically it is looking for two groups of data as identified by the two sets of beginning

and ending parenthesis. The first group, (?:[A-Za-z0-9+/]{4}){2,}, looks for two or more

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 10
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

groups of 4 characters that match the listed letters, numbers or special characters. Note:

the “?:” is used to optimize the processing of the regex and doesn’t affect what the regex

is looking for. The second group looks for either:

• Two characters matching A-Z, a-z, 0-9, + or / followed by one character

(AEIMQUYcgkosw048), followed by an equal sign.

or

• One character matching A-Z, a-z, 0-9, + or / followed by an A, Q, g or W

followed by two equal signs.

 The result will be at least a 12-character string meaning the source data was at

least 7 bytes in length. This approach results in very few false positives however does

result in significant number of false negative results, or missed base64. This is because

not all base64-encoded data ends with either one or two equal signs. An equal sign only

occurs in some implementations of base64 encoding and is used to pad the data to ensure

output is in four bytes blocks. Specifically, source data that has a multiple of three bytes

of data (e.g. 3, 6, 9, 12, etc.) would result in base64 encoded data with no equal signs and

would be missed by this regular expression. This also assumes the specific

implementation of base64 actually uses padding. Also, there is no absolute standard for

base64 ASCII character usage. All implementations of base64 use the characters 0 – 9, A

– Z and a – z but that only addresses the requirements for 62 of 64 necessary characters.

Most implementations of base64 use the forward slash (/) and the plus (+) however this

creates problems in certain circumstances. For example, if base64 were to be embedded

in a URL, the use of the forward slash would be interpreted as a URL divider rather than

part of the base64. As a result, other characters such as dash (-), underscore (_), period

(.), colon (:) and exclamation point (!) are used in some implementations.

The concerns related to the use of different special characters are fairly easy to

resolve using additional regular expressions in which other characters replace the slash

and plus. Unfortunately, the problem associated with the missing equal sign is far more

difficult. Modifying the regular expression to not require any equal signs creates a large

number of false positive results and is thus virtually useless. As a result, we are left with

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 11
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

an undesirable option: we either generate false positives or we generate false negatives.

The best approach depends on the business problem you are trying to solve.

3. Understanding the Problem
Understanding base64 and how it can be identified is interesting as an intellectual

exercise. To be meaningful in a practical sense, it is also important to understand why

base64 represents a problem. The use of base64 places businesses and other

organizations at risk in a variety of ways. Base64 can be use to compromise

environments passively, with attackers sniffing network traffic to identify sensitive

information including usernames and passwords. Base64 can be used actively to bypass

data leakage protection or other data-focused security controls. Based64 can even be

used to directly attack many endpoints. This conbination of threats makes it both

difficult to detect and significantly damaging to even well protected organizations.

3.1. Password Disclosure
Password disclosure may be the most obvious risk associated with base64.

Consider the fictional pharmaceutical company discussed earlier. They require users to

select complex passwords of at least 14 characters in length and require that they be

changed every 30 days. Using the most sophisticated computing methods available, brute

force cracking a 12-character password consisting of only lower case letters would take

approximately 3 years (assuming the cracking environment can guess 1 billion passwords

per second. Cracking a 15-character password consisting of only lower case letters using

the same computing enviornment would take over 53,000 years. (Password Recovery

Speeds, 2009)

Brute force cracking, however, isn’t always necessary. If the organization, out of

ignorance for example, uses basic web authentication, or if the user uses their corporate

password for a third party application that uses basic web authentication, the password

can be disclosed by sniffing traffic on a local coffee shop or fast food resturant’s wireless

network. This is because the username and password in basic web authentication are

encoded using base64, then passed to the server. There is no encryption involved.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 12
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

In addition, some “behind the scenes” applications, such as anti-virus solutions,

use base64 to encode the authentication controls between the client and the signature

update server allowing an attacker to “steal” licenses. Specifically, when testing the

effectveness of the Snort rules definded throughout this document, it was discovered that

basic web authentication was used by a major anti-virus vendor to allow anti-virus clients

to authenticate to signature update servers. The base64 used in the basic web

authentication was able to be decoded revealing both the user name and password. An

attacker could also use this fact to identify signature updates, conduct a man-in-the-

middle attack and provide malware to the target masquerading as the update.

3.2. Data Leakage Protection Bypass
Many organizations today use some type of data leakage protection or DLP

solution. These come in many forms ranging from those that are specific to one protocol

(e.g. email) to those that “sniff” all network traffic. In virtually all cases, these

technologies look for specific patterns of data such as an account number, a social

security number or specific key words associated with other types of sensitive data. The

use of base64 encoding can make this type of detection far more difficult.

Consider the relatively simple example of a social security number or SSN. An

SSN is a 9-digit number that is often represented in the format of 123-45-6789 but can

also be represented as “123456789”, “123 45 6789” or a variety of other formats.

Detecting SSNs effectively takes a fairly complex regular expression - ^(?!000)([0-

6]\d{2}|7([0-6]\d|7[012]))([-]?)(?!00)\d\d\3(?!0000)\d{4}$. Unfortunately, after putting

all of that work into the regex, an attacker can simply encode the SSN using base64 and

wind up with MTIzLTQ1LTY3ODk=. The following table lists various SSNs encoded

via base64.

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

M	
 T	
 l	
 z	
 L	
 T	
 Q	
 1	
 L	
 T	
 Y	
 3	
 O	
 D	
 k	
 =	

M	
 T	
 E	
 x	
 L	
 T	
 E	
 x	
 L	
 T	
 E	
 x	
 M	
 T	
 E	
 =	

M	
 j	
 I	
 y	
 L	
 T	
 I	
 y	
 L	
 T	
 I	
 y	
 M	
 j	
 I	
 =	

M	
 z	
 M	
 z	
 L	
 T	
 M	
 z	
 L	
 T	
 M	
 z	
 M	
 z	
 M	
 =	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 13
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

As you can see, there are some commonalities that could be leveraged to create

additional regular expressions to detect base64 encoded SSNs, but the use of base64

makes detection far more difficult. In the above example, the commonalities are the

result of using a specific implementation of base64 encoding and SSNs in the ###-##-

format. Using different formats, different encoding schemes or even adding some

number of leading characters (e.g. spaces, periods, dashes, etc.) adds complexity, and this

is only one example of the type of data a DLP solution looks for.

If the word “Secret” is encoded using base64, the result is U2VjcmV0. Adding

trailing information to the source data (“Secret 123”) results in U2VjcmV0ICAxMjM=.

As you can see, the first 8 characters are the same. If you add even a single leading space

however, you get an encoded result, IFNlY3JldA==, that is significantly different. The

same dramatic effect occurs when you make other fairly trivial changes to the source data

as shown in the following table:

Source Base64 Encoded
Secret U2VjcmV0
 Secret (1 leading space) IFNlY3JldA==
 Secret (2 leading spaces) ICBTZWNyZXQ=
 Secret (3 leading spaces) ICAgU2VjcmV0
SECRET U0VDUkVU
S E C R E T UyBFIEMgUiBFIFQ=

These dramatic variations in output make configuring a DLP system to detect

specific sensitive information extremely difficult and the complexities increase as the

complexity of the sensitive data increases. While it may be possible to identify, and thus

detect, the majority of possible combinations for a 6 digit word or even for something

with a standard format, as a social security number, it is virtually impossible to do so for

complex intellectual property or business data.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 14
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

3.3. End User Compromise
There are numerous ways that an end user can be compromised using base64 that

primarily rely encoding to evade malware detection signatures, IDS systems and similar

controls. The best examples of such an attack involve targeting an end user via their web

browser.

Web browsers are interesting in that they do a lot of the “thinking” for us.

Originally designed to display ASCII text according to a set of rules called HyperText

Markup Language or HTML, the functionality of web browsers has expanded

significantly. One of the functions that most web browsers will do automatically is

decode encoded data. ASCII text can be encoded in hexadecimal (base16), decimal

(base10) and, of course, base64. This allows an attacker to embed malicious content such

as JavaScript in a web site or a URL. Because the JavaScript is decoded by the browser,

the actual JavaScript is not transmitted across the “wire” and thus is likely not going to be

detected by IDS or other controls.

Consider a simple JavaScript “attack” - <SCRIPT>alert(“Pwned”);</SCRIPT>.

Detecting this type of script is easy using a typical IDS, however it can be encoded using

base64 resulting in - PFNDUklQVD5hbGVydCgiUHduZWQiKTs8L1NDUklQVD4=

making detection far more difficult. This approach can be exploited by creating a very

simple web page:

<html>
<body>

<h1>Heading</h1>

<p>Paragraph.</p>

<META HTTP-EQUIV="refresh" CONTENT="0;url=data:text/html;base64,
PFNDUklQVD5hbGVydCgiUHduZWQiKTs8L1NDUklQVD4=">

</body>
</html>

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 15
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

A user visiting this web page would see an alert box with the word “Pwned” pop

up in their browser, but the JavaScript will have never been sent across the network,

thereby evading network based detection.

This same approach can be used by pasting a link directly in a web browser’s

URL entry field; specifically, the text “data:text/html;base64,

PFNDUklQVD5hbGVydCgiUHduZWQiKTs8L1NDUklQVD4=” (without the quotes)

will result in the JavaScript executing in a web browser as shown in the following image.

Getting a user to click on such an unusual URL is also not particularly difficult.

The data URL scheme (as it is known) can be appended to a legitimate looking URL

however there is an easier method – simply use a URL shortener such as TinyURL

(http://www.tinyurl.com). Shrinking the text using TinyURL results in

http://tinyurl.com/6bddyun. Given that users are familiar with compressed URLs

associated with Twitter and Facebook, it is likely that they would not give such a URL a

second thought. While this same attack vector could be used with JavaScript directly,

sending JavaScript across the wire could be detected by an IDS or similar control while

sending base64 would be less likely to be seen or blocked. Furthermore, using a data

URL can allow the attacker to bypass certain protective controls. Specifically, the

NoScript Firefox extension (http://noscript.net) is designed to block the execution of

scripts, however presenting the script as a data URL bypasses this control resulting in the

execution of a script in a browser that should block that type of activity.

This use of base64 to evade attack is particularly concerning. Using the

combination of the data URL scheme, base64, JavaScript and URL shorteners, it is

trivially easy to execute arbitrary code on a victim’s computer. The code would execute

under the context of the web browser but this still provides the attacker with significant

latitude in terms of attack options including the ability to establish an outbound, SSL

encrypted communications channel. As most organizations have stateful inspection

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 16
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

firewalls, the response traffic to an established outbound session is allowed thereby

allowing the attacker to bypass many different types of perimeter controls. This type of

attack is not, in any way, sophisticated or difficult requiring only a basic understanding of

JavaScript, access to a base64 encoder and access to a URL shortener.

The attack, however, is limited by the fact that it won’t work in some web

browsers. Modern versions of Internet Explorer do not decode most Base64 and while

Google Chrome will, it will not execute the 302 redirect from TinyURL. Google Chrome

will decode the base64 and will execute the resulting JavaScript, thus simply hiding the

data URL information behind “Click Here” or similar innocuous text would likely be

successful. Many of the web browser options for the Android platform will also not

execute the script. As a result, while this type of attack may not work in purely

Microsoft/Internet Explorer environments, it will be effective against Linux, Mac OS X,

iPhones, iPads, some Android-based phones/tablets making, it an effective threat against

most corporate environments. In fact, according to data compiled by statcounter.com, the

combination of Firefox, Chrome, Opera and Safari make up a total of 54% of the web

browser usage throughout the world, making this type of attack particularly concerning.

(Usage Share of Web Browsers, 2011) Furthermore, while Windows computers running

only Internet Explorer would be immune from this threat vector, Windows computers

running Chrome, Firefox or Opera are still susceptable. As it is typically the more

technical employees (e.g. IT personnel) who install alternate web browsers, when this

attack vector is successful, it is likely to provide more value to the attacker.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 17
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

3.4. Web Application Attacks
A variation of the browser attacks against end users involves using base64 to

attempt to bypass web application security controls such as data input validation and web

application firewall technology. While many such controls are configured to detect

obvious JavaScript as part of their cross site scripting prevention capabilities, some may

not detect a similar attack expressed in base64 such as <META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3Njc

mlwdD4K">. This type of attack is of particular concern as the target of cross-site

scripting is often not the vulnerable application but the users of that application. Thus,

while an organization’s web applications may be completely secure, other applications

used by their users may not be resulting in the potential for compromise.

3.5. Malware
Botnets are one of the more common forms of malware. They consist of many

(often thousands or more) slaves or zombies that are centrally controlled by one or more

master(s). Originally, IRC was used for control as it allowed many slaves to join a

specific IRC channel to receive commands. As IRC is not often used in corporate

environments, it was fairly easy to simply block outboud IRC access to mitigate the

botnet risk. As a result, malware authors moved to HTTP for command and control.

This is often done by placing HTML comments on a web page. These comments are not

visible when casually browsing the page but can be seen when viewing the page’s source

code. The malware on the infected hosts is configured to periodically look for commands

“hidden” as these HTML comments. The individual in control of the botnet simply

updates the hidden comments to send new instructions to their zombies. (Team Cymru,

2008)

If these instructions were passed “in the clear”, with no obfuscation, it would be

easy for IDS/IPS systems to detect them. This would increase the likelihood of detection

and make it much easier for malware analysts or incidnet responders to combat the

problem. As a result, the instructions are often encoded using base64. The zombie has a

built in base64 decoder that can be used to translate the instructions into commands that

can be understood and executed by the zombie. While base64 is not the only encoding

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 18
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

used, it is common likely because it is fairly difficult to detect using automated means

while not suffering from the processing overhead involved with true encryption.

4. Base64 Auditing
Given the risks associated with base64, having no program for detecting its use

leaves an organization vulnerable to a variety of direct and indirect attacks. Given the

complexities of detecting base64 however, such a program is an exercise in risk

management and compromise. Detection systems must find a balance between excessive

false positives and excessive false negatives but unlike some other types of detection, the

elimination of both false positives and false negatives is not possible. In fact, any base64

detection solution is likely to include both. The goal is to reduce them to the extent

possible.

In addition, the detection system must be tuned such that the most critical and/or

accurate detection signatures “fire” first. Signatures that detect more than the presence of

base64, such as the Emerging Threats rule for detecting basic web authentication should

be configured to alert first, followed by more specific base64 detection.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 19
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

4.1. Compromise
As discussed previously, planning base64 detection is an exercise in compromise.

While regular expressions such as “[0-9a-zA-Z+/=_]{20,}” will detect virtually all

base64 over 20 bytes in length, it will also result in significant false positives and should

only be used in specific circumstances. More targetted regular expressions such as

“(?:[A-Za-z0-9+/]{4}){2,}(?:[A-Za-z0-9+/]{2}[AEIMQUYcgkosw048]=|[A-Za-z0-

9+/][AQgw]==)” will have fewer false positive results but will miss approximately one

third of the base64 they see as they are looking for trailing equal signs. To address these

concerns, an active program of base64 detection must be employed as follows:

• Application specific base64 detection, such as the basic web

authentication rule, should be used whenever possible.

• Targeted rules such as those using regular expressions that look for

trailing equal signs should be used as high-level alerts.

• IDS operators should review alerts and add specificity to signatures as

possible, thereby creating additional application sepcific base64 detection

signatures.

• In the event that data exfiltration or targeted attacks are suspected,

signatures using regular expressions that result in high false positive

results should be employed but should be made as specific to source and

destination IP address and port, traffic direction, etc. as possible.

Application specific, targeted base64 detection would include any signatures

designed to look for protocols, such as basic web authentication, that utilize base64.

While few of this type of signatures may be available to begin with, as base64 is detected

crossing the network, the circumstances involving its use can be investigated and

categorized as “known good” and “known bad”. Signatures for “known good” base64

usage can be created to simply allow or ignore that traffic reducing the noise generated

by the system. Similarly, specific signatures looking for unique characteristics (e.g.

source address, destination address, source port, destination port or packet payload) of

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 20
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

known bad traffic can be created. Thus, over time, the base64 detection solution will

become more accurate as it gets tuned to the specifics of its environment.

In addition to application specific rules, a base64 detection solution will need to

have general rules for detecting base64 anywhere in any packet, regardless of protocol,

such as those discussed previously in this document. Ideally, these detection signatures

would be geared towards reducing false positive results. During this stage of the

detection process, it is better to miss some base64 than to be overwhelmed with alerts.

The rules provided previously in this document fit this pattern. They will detect base64

with either one or two trailing equal signs. This means that roughly two thirds of all

base64 crossing the network will be detected. The goal at this phase is simply to broadly

detect the use of base64 either entering or leaving the network. Any instances of base64

detected by these signatures should be investigated. The techniques for addressing

known good and known bad base64 would then be used to create additional application

specific rules.

If the use of base64 to circumvent DLP or to conduct specific attacks is detected,

broad detection rules should then be implemented. These rules should leverage regular

expressions such as [0-9a-zA-Z+/=_]{20,} that are highly subject to false positives but

that would result in few, if any, false negatives. The regular expression should be used in

an IDS rule that is specific in terms of traffic direction, source address, destination

address, port an any other detail that can be used to reduce the volume of alerts. The goal

at this phase is to catch everything related to the potential incident. The results should be

investigated thoroughly and used, as appropriate, to pursue criminal, civil or

administrative action and to update the application specific signatures. The following

diagram provides a high level overview of this process:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 21
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

This approach to detection is extremely active and requires knowledgeable

responders and IDS administrators but is only appropriate for environments where some

reasonable level of risk related to base64 is acceptable. Using this approach an attacker

who is aware of the detection methods in place could plan their “attack” such that the

input data would result in base64 without trailing equal signs. Also, when dealing with

end user targeted attacks, missing one out of three base64 communications means that a

significant compromise could occur without detection. This “accepted risk” approach to

detecting base64 is, however, far better than simply ignoring the problem. In extremely

high security environments, the use of broad detection rules could be used in place of the

regular expressions that require the trailing equal signs. This approach would result in a

high number of false positives but would only miss base64 smaller than 20 bytes.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 22
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Using these techniques, the detection of base64 can be customized to any

organization and can be used to detect the majority of base64 threats regardless of source,

application or protocol. Over time, these techniques can also result in a significant

decrease in false positive and false negative results.

4.2. Snort Rules
In order to fully detect base64 using Snort, multiple rules are required, each

designed for a specific purpose. A number of these rules are shown in the following

table:

Use Rule False Alert
Description

Used to detect base64 as
part of basic web
authentication.

alert tcp $HOME_NET any -> any $HTTP_PORTS (msg:"ET
POLICY Outgoing Basic Auth Base64 HTTP Password
detected unencrypted"; flow:established,to_server;
content:"|0d 0a|Authorization|3a 20|Basic"; nocase;
content:!"YW5vbnltb3VzOg=="; within:32; classtype:policy-
violation;
reference:url,doc.emergingthreats.net/bin/view/Main/2006380
; reference:url,www.emergingthreats.net/cgi-
bin/cvsweb.cgi/sigs/POLICY/POLICY_Basic_HTTP_Auth;
sid:2006380; rev:10;) (Emerging Threats, 2011)

Low false
positives but
will miss all
base64 not
associated
with basic
web
authentication

Used to detect “standard”
base64 as well as base64
used for privacy-
enhanced mail, MIME
and Radix-64 encoding
for OpenPGP and
requires trailing equal
sign

Alert tcp $HOME_NET and -> any any (msg:”Possible
standard base64 detected”; pcre:”/ (?:[A-Za-z0-
9+/]{4}){2,}(?:[A-Za-z0-
9+/]{2}[AEIMQUYcgkosw048]=|[A-Za-z0-
9+/][AQgw]==)/”; classtype:policy-violation; sid:
XXXXXXXX;)

Minimal false
positives but
will miss all
regular
expressions
without
trailing equal
sign.

Used to detect “standard”
base64 as well as base64
used for privacy-
enhanced mail, MIME
and Radix-64 encoding
for OpenPGP with no
trailing equal sign
required.

Alert tcp $HOME_NET and -> any any (msg:”Possible
standard base64 detected”; pcre:”/ (?:[A-Za-z0-
9+/]{4}){2,}(?:[A-Za-z0-9+/]{2}[AEIMQUYcgkosw048]|[A-
Za-z0-9+/][AQgw])/”; classtype:policy-violation; sid:
XXXXXXXX;)

High false
positives.

Used to detect a
modified version of
base64 used for URL
applications.

Alert tcp $HOME_NET and -> any any (msg:”Possible non-
standard base64 detected”; pcre:”/ (?:[A-Za-z0-9\-
_]{4}){2,}(?:[A-Za-z0-9+/]{2}[AEIMQUYcgkosw048]|[A-
Za-z0-9\-_][AQgw])/”; classtype:policy-violation; sid:
XXXXXXXX;)

High false
positives.

Used to detect long
ASCII strings with
base64 compliant
characters.

Alert tcp $HOME_NET and -> any any (msg:”Possible
standard base64 detected”; pcre:”/[0-9a-zA-Z+/=_]{20,}/”;
classtype:policy-violation; sid: XXXXXXXX;)

Extremely
high false
positive
results.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 23
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

5. Conclusion
Base64 represents a very real risk to organizations that rely on computers,

networking and the Internet for a variety of reasons. Base64 is often used in place of

encryption to transmit sensitive information including usernames and passwords which

can result in unauthorized disclosure. Base64 can also be used to obfuscate attacks in an

attempt to bypass detection and protection technologies. Unfortunately, the detection of

base64 is extremely difficult as base64 is simply ASCII text that just happens to decode

into something else. While the detection of base64 should be part of any monitoring

program, it is always going to be an act of compromise involving reducing but not

eliminating false positive and false negative results. To achieve the highest overall

detection fidelity, organizations must implement an active program of detection that

involves continual reviewing of alerts and tuning of the system. If done properly

however, base64 detection can become an effective component of an overall information

security program.

	

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 24
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

6. References

2006280. (2011, May 25). Emerging Threats. Retrieved August 16, 2011, from

doc.emergingthreats.net/2006380

Coyier, C. (2010, March 25). DataÂ URIs | CSS-Tricks. CSS-Tricks. Retrieved August

16, 2011, from http://css-tricks.com/5970-data-uris

Craig. (2007, August 7). Filtering base64 encoded spam | Small Dropbear. Small Drop

Bear . Retrieved August 16, 2011, from http://enc.com.au/2007/08/filtering-

base64-encoded-spam

Franks. (n.d.). RFC2617 - HTTP Authentication. Internet Engineering Task Force.

Retrieved August 16, 2011, from tools.ietf.org/html/rfc2117

Freed, N. (n.d.). Multipurpose Internet Mail Extensions. Internet Engineering Task

Force. Retrieved August 16, 2011, from tools.ietf.org/html/rfc2045

Good, G. (n.d.). The LDAP Data Interchange Format (LDIF) - Technical Specifications.

Internet Engineering Task Force. Retrieved August 16, 2011, from

www.ietf.org/rfc/rfc2849.txt

Password Recovery Speeds. (2009, July 10). Lockdown.co.uk - The Home Computer

Security Center . Retrieved August 16, 2011, from

http://www.lockdown.co.uk/?pg=combi

Perera, H. (2011, May 1). History of Steganography. Hareendra's Blog. Retrieved

August 16, 2011, from http://hareenlaks.blogspot.com/2011/04/history-of-

steganography.html

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.As part of the Information Security Reading Room© 2011 The SANS Institute

Base64 Can Get You Pwned 25
	

Kevin	
 Fiscus,	
 kevinfiscus@gmail.com	

Prabhakar, A. (2011, January 11). the Digital me: Base 64 Encoding. the Digital me.

Retrieved August 16, 2011, from http://digitalpbk.blogspot.com/2006/12/base-

64-encoding.html

Cymru. (n.d.). A Taste of HTTP Botnets. Team Cymru. Retrieved August 16, 2011, from

www.team-cymru.com/ReadingRoom/Whitepapers/2008/http-botnets.pdf

Usage share of web browsers - Wikipedia, the free encyclopedia. (2011, July 26).

Wikipedia, the free encyclopedia. Retrieved July 26, 2011, from

http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

Last Updated: June 4th, 2015

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Dublin 2015 Dublin, IE Jun 08, 2015 - Jun 13, 2015 Live EventSANSFIRE 2015 Baltimore, MDUS Jun 13, 2015 - Jun 20, 2015 Live EventSANS Pen Test Berlin 2015 Berlin, DE Jun 22, 2015 - Jun 27, 2015 Live EventSANS Rocky Mountain 2015 Denver, COUS Jun 22, 2015 - Jun 27, 2015 Live EventCyber Defence Canberra 2015 Canberra, AU Jun 29, 2015 - Jul 11, 2015 Live EventSANS Capital City 2015 Washington, DCUS Jul 06, 2015 - Jul 11, 2015 Live EventDigital Forensics & Incident Response Summit Austin, TXUS Jul 07, 2015 - Jul 14, 2015 Live EventEuropean Security Awareness Summit London, GB Jul 08, 2015 - Jul 10, 2015 Live EventSANS London in the Summer London, GB Jul 13, 2015 - Jul 18, 2015 Live EventSANS San Jose 2015 San Jose, CAUS Jul 20, 2015 - Jul 25, 2015 Live EventSANS Minneapolis 2015 Minneapolis, MNUS Jul 20, 2015 - Jul 25, 2015 Live EventSANS Boston 2015 Boston, MAUS Aug 03, 2015 - Aug 08, 2015 Live EventCyber Defense Summit & Training Nashville, TNUS Aug 11, 2015 - Aug 18, 2015 Live EventSecurity Awareness Summit & Training Philadelphia, PAUS Aug 17, 2015 - Aug 25, 2015 Live EventSANS San Antonio 2015 San Antonio, TXUS Aug 17, 2015 - Aug 22, 2015 Live EventSANS DFIR Delhi 2015 Delhi, IN Aug 24, 2015 - Sep 05, 2015 Live EventSANS Virginia Beach 2015 Virginia Beach, VAUS Aug 24, 2015 - Sep 04, 2015 Live EventSANS Chicago 2015 Chicago, ILUS Aug 30, 2015 - Sep 04, 2015 Live EventFOR578 Cyber Threat Intelligence Tysons Corner, VAUS Aug 31, 2015 - Sep 04, 2015 Live EventSANS ICS410 Vienna in Association with IAEA OnlineAT Jun 06, 2015 - Jun 10, 2015 Live EventSANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=37847
http://www.sans.org/dublin-2015
http://www.sans.org/link.php?id=27529
http://www.sans.org/sansfire-2015
http://www.sans.org/link.php?id=37967
http://www.sans.org/pen-test-berlin-2015
http://www.sans.org/link.php?id=38482
http://www.sans.org/rocky-mountain-2015
http://www.sans.org/link.php?id=39127
http://www.sans.org/cyber-defence-canberra-2015
http://www.sans.org/link.php?id=38487
http://www.sans.org/capital-city-2015
http://www.sans.org/link.php?id=37107
http://www.sans.org/digital-forensics-summit-2015
http://www.sans.org/link.php?id=39437
http://www.sans.org/european-security-awareness-summit
http://www.sans.org/link.php?id=37832
http://www.sans.org/london-in-the-summer-2015
http://www.sans.org/link.php?id=38627
http://www.sans.org/san-jose-2015
http://www.sans.org/link.php?id=39452
http://www.sans.org/minneapolis-2015
http://www.sans.org/link.php?id=38492
http://www.sans.org/boston-2015
http://www.sans.org/link.php?id=38082
http://www.sans.org/cyber-defense-summit-and-training-2015
http://www.sans.org/link.php?id=39517
http://www.sans.org/security-awareness-summit-2015
http://www.sans.org/link.php?id=38497
http://www.sans.org/san-antonio-2015
http://www.sans.org/link.php?id=39277
http://www.sans.org/delhi-2015
http://www.sans.org/link.php?id=38887
http://www.sans.org/virginia-beach-2015
http://www.sans.org/link.php?id=38507
http://www.sans.org/chicago-2015
http://www.sans.org/link.php?id=40727
http://www.sans.org/for578-cyber-threat-intelligence-beta
http://www.sans.org/link.php?id=40232
http://www.sans.org/ics410-vienna-with-iaea
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

