
Part I

Manifolds

1 Lecture 1

Definition Let X be a set, then a metric on x as a function

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0

3. d(x, z) ≤ d(x, y) + d(y, z)

Definition The ε-neighbourhood U(x0, ε) of x0 is defined by U(x0, ε) = {x|d(x, xo, ) <
ε}

Definition A subset U of X is open if for each x0 ∈ U , there exists ε > 0 such
that U(x0, ε) ⊂ U

Definition A subset B of X is closed in X if its complement is open.

Definition A function f : X → Y is continuous at x0 ∈ X if for each open set
V ⊂ Y , containting f(x0), theres an open set U ⊂ X containing x0 such that
f(U) ⊂ V

Definition f : X → Y is injective if ∀a, b ∈ Xf(a) = f(b)⇒ a = b

Definition f : X → Y is differentiable at x0 ∈ X if there exists an n by k
matrix B such that;

lim
h→0

f(x0 + h)− f(x0)−Bh
||h||

= 0 (1)

The matrix B is unique and is the derivative of f at x0 denoted by Df(x0)

We have the partial derivative of a function f as;

Dif = lim
t→0

fi(x0 + tei)− f(x0)

t
(2)

Definition If all partial derivatives of fi for i = 1, . . . , n of order r or less are
continuous, then f is of class Cr on X.

Definition Let A ⊂ Rn open and let f(A)→ Rn be of class Cr, then we define
Df(x) to be non-singular at x if Det[f ] 6= 0.

Theorem 1.1 If Df(x) is non singular at a ∈ A, there is a neighbourhood U
of A such that f carries U injectively into an open set V ⊂ Rn. The inverse
function f−1 is of class Cr on V .

Note that the non singularity of Df implies that f is locally injective, however
it may not be globally one to one on the whole domain.
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2 Lecture 2

Definition Let 0 < k ≤ n, let A ⊂ Rk open, and let α : A → Rn ∈ Cr, r ≥ 1.
Then the set y = α(A), together with the map α is called the parametrised
manifold.

Definition Suppose M is a subspace of Rn such that for each p ∈M , there is
a set V containing p, open in M and set U ehcih is open in Rk, and a continuous
map α : U → V suchthat;

1. α is injective

2. α−1 : V → U is continuous

3. Dα(x) has rank k for each x ∈ U

4. α is of class Cr, r ≥ 1

This implies that M is a k-manifold without boundries in Rn of class Cr. α is
called the co-ordinate patch on M around p.

3 Lecture 3

4 Lecture 4

5 Lecture 5

6 Lecture 6

Definition The ε - neighbourhood U(xo, ε) of x0 is defined by

U(x0, ε) = {x|d(x, x0) < ε} (3)

Definition A subset B of X is closed in X if its complement is open.

Definition A function f : X → Y is continuos at x0 ∈ X if for each open
set V ⊂ Y , containing f(x0) theres an open set U ⊂ containingx0 such that
f(U) ⊂ V .

Example
f : R→ Rgivenbyf(x) = x (4)

Definition Let M be a K-Manifold in Rn and p ∈M .1

If there is a coordinate patch α : U− > V on M about p such that U is open
in Rk then p is an interior point, otherwise p is a boundary point.2

1In the manifold definition we allowed two domains, open and closed.
2Interior point - Pre image open in Rk.
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The set of boundary points is δM . δM : Boundary of M M − δM : Interior
of M. Let α : U− > V about the point p in M.

1. If U contained in Rk open, then p is in the interior of M

2. If U contained in Hk open and p = α(x0) with x0 in Hk, then p is in the
interior.

3. If U in Hk and p = α(x0) with x0inR
k−1 implies that p is in the boundary

of M

Proof 1. Follows from to def

2. Let U0 − UintersetionHk and let V0 = α(x0), then α(u0) : U→V0 is a

patch about p with U0 open in Rk.

3. Assume there is a 2nd patch, α1 : U1 → V1 about p with U1 open in Rk

we will derive a contradiction. V0and V1 are both open in M which implies
W, the intersection is open in M. Let Wi = α−i 1(w) for i = 0, 1, then W0

is open in Hk contains x0and W is open inRkα−0 1 ◦ α1 : W1− > W0 is of
class Cr with non- singular derivative.

By the Inverse function theorem →W0 must be open in Rk, however W0

is contained in Hk and contains X0 ∈ Rk − 1→W0 not open inRk

Theorem 6.1 Let M be a k-manifold in Rn for k ≥ 2. If δM is non empty,
thenδM is a (k-1)-manifold without boundary in Rn.

Proof Let p∈ δM. Let α : U− > V be a patch on M around P. Then U is open
in Hkandp = α(x0) for some x0 ∈ δHk = R(k − 1)xo.

By the previous Lemma, each point inU ∩ δmathbbHk is mapped toδM
α : U → δM
Let U0 ∈ Rk − 1, and open such that U0x0 = U ∩ δHk

Definition α : U0 → V0, given by α(x, 0) = α(x, 0) = α0(x) Then α0 is a co-od
patch andδM ⇒ δ(δM) = ∅

x2 + y2 − 1 = 0 is the equation for the unit circle.

Theorem 6.2 Let O be open in Rn; let f : O → R, be of class Cr. Let M be
the set of points for which f(x) = 0, and N the set for which f ≥ 0. Suppose M
is not empty and Df(x) has rank 1 for all x ∈M Then N is a n-manifold in Rn
and δN = M.

7 Lecture 7

Theorem 7.1 Let O be open in Rn, let f : O → R be of class CrN = {x ∈
Rn|f(x) ≥ 0} , Suppose M = ∅ and Df(x)hasrank1∀x ∈ M . Then N is an
n-manifold in Rn and M = δN
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Proof Let p ∈ Nsuchthatf(p) > 0 LetU ∈ R, open consisting of all points x
such that f(x) > 0. LKet α : U → U the identity map. Then α is a patch on N
about p, whose domain is open in Rn ⇒ p is an interior point.

Let p ∈ Nsuchthatf(p) = 0 Since Df(p) 6=, atleast1Dif(p), i = 1, . . . , n is
non zero. Let Dnf(p) 6= 0 Define F : O → Rn by

1. F (x) = (x1, . . . , x(n− 1), f(x))

2.

DF =

[
In−1 0
∗ Dnf

]
⇒ Df(p) is non singular ⇒ ∃A ⊃ p which is mapped by F 1 - to - 1 to an

open set B of R and F−1 ∈ Cr
F maps A ∩ N onto an open set B ∩ Hn, since x ∈ N ⇔ f(x) ≥ 0. ⇒

F−1B ∩Hn → A ∩N is the required coordinate patch.

fi : 0→ Rnfori = 1, . . . , n−k M = {x ∈ Rn|fi(x) = 0∀i} LetD(f1, . . . f(n−k))
has rank n-k on M ⇒ M is a k - manifold

Example

f1(x1, y1) = x21+y21−f21 = 0f2(x1, y1, x2, y2) = (x2−x1)2+(y2−y1)2f2 = 0 (5)

We have discussed Manifolds and there properties, the next part of the course
we will look at integration in Rk. We will have a third section called differential
forms which we will look at a lot of linear algebra for. These three sections will
at the end, come together to have integration on M using differential form. We
will see Stokes theorem.

Part II

Integration

7.1 Integration in Rn

Rectangle:
Q = [a1, b1]× [a2, b2]× . . .× [an, bn]
Volume:
V (Q) = (b1 − a1) . . . (bn − an)

Definition Given [a, b] ∈ R, a partition P of [a, b]is ti such that;
a = t0 < t1 < . . . < tk = b

Definition A partition P of Q is an n-tuple (P1, . . . , Pn) such that P is a
partition of [ai, bi]∀i.
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Definition f : Q → R and bounded. Let P be a partition of Q. For each
rectangle R ⊂ P we define;

1. mR = inf{f(x)|x ∈ R}
L(f, P ) =

∑
(R ⊂ P )mR(f)V (R)

2. MR = sup{f(x)|x ∈ R}
U(f, P ) =

∑
(R ⊂ P )MR(f)V (R)

8 Lecture 8

We will discuss integration on Rn over a rectangle Q by taking a partition of
the rectangle. Lecture begins with a recap from lecture 8, defining upper and
lower sums.

The lower integral is given by
∫
f = supP {L(f, P )} ldots the maximum

value of the lower sum.
The upper integral:

∫
f = inf{U(f, P )}.

Definition f is integrable over Q if
∫
Q
f =

∫ Q
=
∫
Q
f

Example of non-integrable function:

g(x) = {1, ifx ∈ Q (6)

0ifx /∈ Q. (7)

Let Q = I1 × . . .× In with Ij ∈ R and closed.
If f : Q→ R is continuous, then∫

Q

f =

∫
+x1 ∈ I1 . . .

∫
xn∈In

f(x1, . . . xn) (8)

Definition Let A be a subset of Rn we say A has a measure zero in Rn if for
every ε > 0, there is a covering of A by countably many rectangles Qi such that∑

i

V (Qi) < ε (9)

Theorem 8.1 Let Q ⊂ Rnbearectangle, and f : Q → R. Assume f is inte-
grable over Q. If f vanishes except on a set of measure 0, then

∫
Q
f = 0.

Proof Let P be a partition of Q, and R ⊂ P . Assume f = 0, except on the set
E of measure 0.
⇒ R * E ⇒ f = 0 at somepoint of R. Then mR(f) ≤ 0,MR(f) ≥ 0.
⇒ L(f, P ) ≤ 0, U(f, P ) ≥ 0.
Thus

∫
f ≤ 0,

∫
⇒
∫
Q
f = 0
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Definition Let S be a bounded set in Rn and f : S → R be a bounded function.
Define fs : Rn → R by;

fs(x) = {f(x)forx ∈ S (10)

0otherwise. (11)

Choose a rectangle Q such that S ⊂ Q. Then the integral of f over S is
defined by

∫
S
f =

∫
Q
fs if the latter exists.

This is independent of the choice of the rectangle Q. Refer to diagram in
notesbook.

Theorem 8.2 Let S be a bounded set in Rn ;
let f : S → Rbe a bounded & continuous function. LetA = IntS. If f is integrable
over S, then f is integrable over A and:∫

S

f =

∫
A

f (12)

Proof Not proved in class

Definition Let S be a bounded set in Rn. If the constant 1 is integrable over S,
we say that S is rectifiable ad then the n-dim volume is defined as V (S) =

∫
S

1

Let A ⊂ R open. Then there exists a sequence C1, C2, . . . of compact recti-
fiable subsets of A whose union is A, such that CN ( CN+1 for each N.

9 Lecture 9

Rectifiable Set A bounded set S such that;∫
S

1 exists (13)

Recall: f(x) = 1 if, x ∈ Q, 0 otherwise.

Theorem 9.1 Let A be open in Rn; let f : A → R ∈ C0. Choose a sequence
CN of compact rectifiable subsets of A, whose union is A such that;

CN * CN+1∀N (14)

Then f is integrable over A ⇔ the sequence
∫
CN

f is bounded.
In that case; ∫

A

f = lim
N→∞

∫
CN

f (15)
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Example ∫
A

f(x, y) =

∫
A

e−x
2−y2 (16)

= limN→∞

∫
f(x, y) (17)

Recall from 1 dimensional change of variables;∫ g(a)

g(b)

f =

∫ b

a

(f ◦ g)g′ (18)

Change of Variable: x = g(y)

f ∈ C0, g ∈ C−1 (19)

Definition Let A ⊂ Rn open. Let g : A→ Rn be a 1 to 1 function of class Cr

such that Det(Dg) 6= 0 for x ∈ A. Then g is a change of variables in Rn

Definition Let A and B be open in Rn. If g : A→ B is 1 to 1, such that both
g ∈ Cr(A) and g−1 ∈ Cr(B), then g is a diffeomorphism.

Theorem 9.2 (Change of Variables Theorem) Let g : A → B be a dif-
feomorphism. Let f : B → R be continuous. Then f is integrable over B iff,
(f ◦ g)|Det(Dg)| is integrable over A, and in this case;∫

B

f =

∫
A

(f ◦ g)|Det(Dg)| (20)

Proof Not proved in class

Reffering to the previous example (In copy)

Example
∫
B
f(x, y) with f(x, y) = e−x

2−y2 and g(r, φ) = (r cosφ, r sinφ). We
have the set A = {r ∈ [0,∞], φ ∈ [0, π2]}

Example finished in book

Theorem 9.3 Let A be an n by n matrix. Let h : Rn → Rndefined by h(x) =
Aẋ. Let S be a rectifiable set inRn and T = h(s) Then V (T ) = |Det(A)|V (S)

Proof We first assume that Det(A) 6= 0,→ h is diffeomoprhism of Rn. h : S →
T and T is rectifiable.

V (T ) =

∫
T

1 =

∫
|Det(Dh)| by change of Var theorem (21)

=

∫
|Det(A)| = |Det(A)|V (S). (22)

LetDet(A) = 0. Then h carris s to a linear subspace V of Rn withDim(V )→
The n-dim volme of T is 0.
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10 Lecture 10 ∫
B

f =

∫
A

(f ◦ g)|Det[Dg]| (23)

Let h : Rn → Rn, h(x) = Ax A is an (nx× n)-matrix. Let S be a rectifiable set
in Rn, and T = h(s);

V (T ) =

∫
1 = |Det[A]|V (S) (24)

Definition A matrix A is orthogonal if;

AT Ȧ = In (25)

Note that Det[A] = ±1, since Det[AT ] = Det[A]

Let A be an orthogonal matrices represent rotations and reflections (refer to
notes for diagram). Recall the Euclidean metric in Rn;

||x− y||2 =

n∑
i=1

(xi − yi)2 =< x− y, x− y > (26)

Where < x, y >=
∑n
i=1 xiyi

Theorem 10.1 Let h(x) = Aẋ with A orthogonal, then ||x−y|| = ||h(x)−h(y)||

Proof < h(x), h(x) >= (Ax)TAx = xTATAx = xTx =< x, x > ⇒ h(x)
preserves distance such maps are isometies. Most general isometry in Rn is
h(x) = Ax+ p

A change of basis of Rn is a map g : Rn → Rn which is injective, linear, and
both g and its inverse are continuous. Let ~x be a directed line segment. Change
of basis leaves ~x invariant.

Let ai be the old basis and bi the new basis, then (b1, . . . , bn) = (a1, . . . , an)C
Where C is an n by n matrix.

~x =

n∑
i=1

(27)

=

n∑
i=1

yibi for some yi (28)

(29)

Proposition 10.2 y = C−1x

Proof bẏ = zCC−1x = aẋ = ~x
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• a transforms covariantly under change of basis.

• x transforms contravariantly under a change of basis.

Definition Let a1, . . . , ak be independent vectors of Rn. The k-dimensional
parallelopiped

ρ =ρ(a1, . . . ak) defined to be; (30)

ρ ={x ∈ Rn|x =

n∑
i=1

ciai, 0 ≤ ci ≤ 1} (31)

(32)

Theorem 10.3 Let a1, . . . , an be n independent vectors in Rn. Let A = [a1, . . . an],
the n by n matrix with columns ai, Then;

V (ρ({ai})) = |Det[A]| (33)

Proof Consider h : Rn → Rn defined by h(x) = Ax, then h maps the unit basis
vector ei to ai. Therefore the unit cube [0, 1]n is mapped to ρ({ai})

V (ρ({ai})) =|Det[A]|V ([0, 1]n) (34)

=|Det[A]| (35)

(36)

B-dim parallelopiped with edges a, b, c has volume;

a(b× C) =

 a1 a1 a3
b1 b2 b3
c1 c2 c3


See diagram for illustration of right and left handed co ordinate system.
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11 Lecture 11

We begin this lecture by recapping the left and right handed triple, there deter-
minants and respective diagrams.

Multiplying a times by gives us c. We will now generalise this notion of left
and right handedness.

Definition An n-tuple (a1, . . . , an) of independent vectors is called an n-frame
in Rn. We call the frame right-handed if;

Det[a1, . . . , an] > 0 (37)

left-handed otherwise.

The collection of all right handed frames is called an orientation of Rn and
similarly the collection of all left handed frames.

Theorem 11.1 Let C be a non singular n×n matrix. Let h : Rn → Rn defined
by h(x) = Cẋ if Det[C] > 0, the frames {ai} and {h(ai)} belong to the same
orientations. If Det[C] < 0, they belong to opposite orientations.

Proof Let bi = h(ai)∀i, Then;

C (̇a1, . . . an) = (b1, . . . , bn) (38)

→ Det[a1, . . . , an] = Det[b1, . . . , bn] (39)

Let ρ({ai}) be an n dim parallelopiped in Rn, then;

V (ρ({ai})) = |Det[a1, . . . , an]| (40)

Definition Consider the k dimensional paralleopiped in Rn, given by
ρ(a1, . . . , ak) its k dimensional volume is

V (ρ) =
√
Det(ATA), (41)

Where A is the n by k matrix [a1, . . . , ak]

Proposition 11.2 If ai ∈ Rk × 0 ∈ Rn, are of the form (zi, 0)T ,
with zi ∈ Rk. Then V (a1, . . . ak) = |Det[z1, . . . , zk]|

Proof A = (z, 0)T with z = (z1, . . . , zk) Det[ATA] = Det[ZTZ] = Det[Z]2

V (a1, . . . ak) = |Det[Z]|
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Proposition 11.3 Let h be an orthogonal transformation, then V (h(a1), . . . , h(ak)) =
V (a1, . . . , ak)

Proof Let h(x) = Bx, with B orthogonal

V (h(a1), . . . , h(ak)) =(Det[(BA)TBA])1/2 (42)

=(Det[ATBTBA])1/2 (43)

=(Det[ATA])1/2 (44)

=V (a1, . . . , ak) (45)

(46)
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Definition Let k ≤ n. Let A ⊂ Rk open, and α : A → Rn ∈ Cr. Then
Y = α(A) together with the map α is a parametrised manifold. Its volume is
given by;

V (Yα) =

∫
A

V (Dα) (47)

We will now consider the motivation for the volume of a parametrised man-
ifold. Let A be the interior of a rectangle Q ∈ Rk. Suppose α : A→ Rn can be
extended to a function of class Cr in a neighbourhood of Q. We partition the
rectangle Q into smaller rectangles and we can take a specific rectangle R

The edges of α(R) are given by α(ai + hiei) are given by;

α(a1 + h1e1, a2)− α(a1, a2) (48)

is well approximated for small hi by;

∂α(a1, a2)

∂a1
hi = Dα(a)h1e1 (49)

V (v1, . . . , vk) =V (
δα

δx1
, ldots)× h1, . . . hk (50)

=V (Dα)V (R)⇒
∫
dV =

∫
V (Dα) (51)

(52)
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12 Lecture 12

Fist homework is now available with deadline of the 22nd February. Recap;

V ol(Yα) =

∫
A

V (Dα)

=

∫
yα

dV

α : A→ Rn

Dα is a n by k matrix

V (Dα) =(Det[ATA])1/2

example of semi circle in copybook

Definition Let A ⊂ Rk open, α : A→ Rk and Y = α(A). Let f : Y → R. The
integral of f over Yα with respects to the volume is define by;∫

Y

fdV =

∫
A

(f ◦ α)V (Dα) (53)

This can be covered by different parametrised manifolds. You should get
the same length of the semi circle. The following theorem makes this statement
more precise.

Theorem 12.1 Let g : A → B be a diffeomorphism3 of open sets in Rk. Let
β : B → Rn ⊂ Cr(B), and Y = β(B). Let α = β ◦ g : A → Rn, such that
Y = α(A).

Assume f : Y → R is continuous. Then f is integrable over Yβ ⇔ f is inte-
grable over Yα and

∫
Yα
fdV =

∫
Yβ
fdV

Figure 1:

3An invertible function mapping one differentiable manifold to another
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Proof We need to show the following;∫
B

(f ◦ β)V (Dβ) =

∫
A

(f ◦ α)V (Dα) (54)

Using the change of variable theorem one finds;∫
B

(f ◦ β)V (Dβ) =

∫
A

(f ◦ β ◦ g)(V (Dβ) ◦ g)|Det[Dg]| (55)

If y = g(x), (V (Dβ) ◦ g)(x) = V (Dβ(y)). Comparison shows, that we need to
prove;

(V (Dβ) ◦ g)|Det[Dg]| = V (Dα) (56)

We know that α = β ◦ g, Chain rule gives;

Dα(x) = Dβ(y)Dg(x) (57)

We have;

V (Dα(x))2 =Det[Dα(x)TDα(x)] (58)

=Det[(Dg(x)TDβ(y)TDβ(y)Dg(x)] (59)

=Det[Dg]2Det[DβTDβ] (60)

This shows that it does not matter which co ordinate patch you chose to compute
the integrals.

Definition If φ : Rn → R, then the support of φ is the closure of the set;

{x|φ(x) 6= 0} (61)

In otherwords, if x /∈ Support(φ), then there is some neighbourhood of x, Ux
in which φ vanishes identically. Or, it is the smallest closed set containing all
points x not mapped to zero.

Definition Let M ⊂ Rn, be a compact k-manifold. Let f : M → R be contin-
uous. Let S = Support(f). Suppose there is a coordinate patch α : U → V on
M such that S ⊂ V . Therefore we can assume that U is also bounded. Then
the integral of f over M is;∫

M

fdV =

∫
interior(U)

(f ◦ α)V (Dα) (62)

Recall that the interior of a set M is M − δM . Then the interior of U can be
expressed as;

U − δU =

{
U if U is open Rk

U ∩Hk if U is open in Hk but not in Rk
}
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13 Lecture 13

Illustrating what we have done this far with diagrams: see copy book.

Lemma 13.1 If the support of f can be covered by a single co-ordinate patch,
the integral

∫
M
fdV is independent of the patch chosen.

Proof We begin by using the properties of the transition functions mapping
U1 → U0. We need to show;∫

int(U0)

(f ◦ α0)V (Dα0) =

∫
int(U1)

(f ◦ α1)V (Dα1). (63)

Since U0 and V0 contain Supp(f), W = U0 ∩ U1, contains Supp(f). Let
Wi = α−1i (W ) ⇒ We can replace Ui by Wi. Since the volume is invariant un-
der reparameterisation, the result follows immediately. Consider the transition
function α−11 ◦ α

−1
0 : W0 → W1 ∈ Cr, and non-singular derivative Rightarrow

α−11 ◦α
−1
0 is a diffeomorphism. Our previous theorem gives the equality of these

integrals.

13.1 Partitions of Unity

Let {Ai} be a collection of open sets in Rn. Let A be there union. A sequence
φ1, φ2, . . . , of continuous functions φi : Rn → R satisfies the following;

1. φi(x) ≥ 0, ∀x

2. the Si = Support(φi)| is contained in A

3. There exists a neighbourhood U(x, ε). for all x ∈ A, that intersects only
finitely many Si

4.
∑∞
i=1 φi(x) = 1 for each x ∈ A

Figure 2:

Such a sequence {φi} is a partition of unity for A. It is dominated by {Ai}
if for all j, Sj is contained in an element of {Ai}.

We see an example of a partition of unity by translating f(x) = (1 +
Cos(x))/2 where x ∈ (−π, π). 0 otherwise, over the whole real line. This is
of class C1. We will now see a partition of unity of class C∞
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Theorem 13.2 Let A ⊂ Rn, open. Let f : A→ R, be continuous. Let {φi} be
a partition of unity on A having compact supports. Then

∫
A
f exists if;

∞∑
i=1

[

∫
A

φi|f |] converges (64)

and in this case ∫
A

f =

∞∑
i=1

φif (65)

Lemma 13.3 Let M be a compact k-manifold ∈ Rn given a covering of M, by
patches αi : Ui → Vi, there exists a finite collection of C∞-functions φ1, . . . , φl :
Rn → R. Such that:

1. φi(x) ≥ 0 for all x

2. Given i, Supp(φi) is compact and there is a patch αj : Uj → Vj such that
(Supp(φi)) ∩M ⊂ Vi

3.
∑l
i=1 φi(x) = 1 for x ∈M
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14 Lecture 14

We began to discuss the partition of unity over integrals in the last lecture. We
will continue this discussion today.

14.1 Partition of Unity over Manifolds

Definition Let f : M → R be continuous choose a partition of unity φ1, . . . , φl
on M dominated by a covering of M by patches. Then define∫

M

fdV =

l∑
i=1

∫
M

φifdV (66)

Proposition 14.1 If the Supp(f) lies in a single patch α : U → V , then the
definition agrees which;∫

M

fdV =

∫
A

(f ◦ α)V (Dα), with A = int(U) (67)

Proof

l∑
i=1

∫
M

(φ, f)dV =

l∑
i=1

∫
A

(φ ◦ α)(f ◦ α)V (Dα) (68)

=

∫
A

l∑
i=1

(φi ◦ α)(f ◦ α)V (Dα) (69)

=

∫
A

(f ◦ α)V (Dα) (70)

(71)

Proposition 14.2 Definition is independent of choice of partition of unity

Proof We begin by choosing another partition of unity and we show that the
two integrals are equal to one another. Let ψ1, . . . , ψm, be another partition of
unity. By using the previous definition we have;∫

M

(ψj , f)dV =

l∑
i=1

∫
(φiψjf)dV (72)

Summing over j;
m∑
j=1

l∑
i=1

∫
(φiψjf)dV (73)

This sum is symmetric so by taking each sum over i and j inside the integral we
get;

m∑
j=1

∫
M

(ψjf)dV =

l∑
i=1

∫
M

(φif)dV =

∫
M

fdV (74)
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It can be quite difficult to integrate certain partitions of unity so we have
the following theorem;

Theorem 14.3 Let f : M → R, suppose that α : Ai → Mi for i = 1, . . . N ,
such that Ai is open in Rk and M is the disjoint union of the open sets Mi and
a set K of measure zero in M . Then∫

M

fdV =

N∑
i=1

∫
(f ◦ αi)V (Dαi) (75)

This concludes the topic of integration for the next few weeks and we now
develop the technology of differential forms.

14.2 Differential Forms

We return to the topic of linear algebra and slightly generalise this before we
begin to define differential forms.

Let V be a vector space. A function f is linear if

1. f(v1 + v2) = f(v1) + f(v2), for v1, v2 ∈ V

2. f(αv) = alphaf(v), for v ∈ V and α ∈ R

Definition Let V be a vector space and V k = V × . . .×V denote the set of all
k-tuples (v1, . . . , vk), with vj ∈ V . Then a function;

f : V k → R is mulitilinear (76)

If f(v1, . . . vk) is linear for each i = 1, . . . , k

It is also known as a k-tensor. Lk is the space of all k-tensors. L1(k) is the
set of all linear transformations f : V → R defined as f(x) = yTx L1(V ) is also
denoted V ∗ and called the dual space of V. Lk(v) = V ∗ ⊗ . . .⊗ V ∗

What is a tensor product? One example of a 2-tensor: f(x1, x2)→ R defined
as
∑
i,j di,jx1,ix2, j

Another example is<,>: V×V → R ∈ L2(V ) And anotherDet(a1, . . . an)→
V n → R ∈ Lk(V )

15 Lecture 15

f ∈ Lk(V ). Setting k = 1, f(v) =
∑n
i=1 divi. With L1(V ) = V ?, the dim(V ) =

dim(V ?). Then L1(V ) is just the set of all linear transformations f : V → R.
Often times it is denoted by called the dual space of V and denoted V ?.

Theorem 15.1 Addition and multiplication of tensors:

• (f + g)(v1, . . . , vk) = f(v1, . . . , vk) + g(v1, . . . , vk)
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• (cf)(v1, . . . , vk) = c(f(v1, . . . , vk))

This implies that Lk(V ) is a vector space.

Multilinear transformations are entireley determined once we know its values
on basis elements. This statement is proved with the following.

Lemma 15.2 Let a1, . . . , an be a basis for V . If f, g : V k → are k-tensors on
V and if

f(ai1 , . . . , aik) = g(ai1 , . . . , aik) (77)

for ever k-tuple I = (i1, . . . , ik) of integers from the set {1, . . . , n}, then f = g.
Note that i1, . . . , ik be distinct or arranged in any particular order.

Proof Given an arbitrary k-tuple of vectors (v1, . . . , vk) of V . We express each
vi in terms of the given basis;

vi =
∑
j

= 1kajcij . (78)

Computing f

f(v1, . . . , vk) =

n∑
j1=1

c1j1f(aj1 , v2, . . . , vk)

=

n∑
j2=1

n∑
j1=1

c1j1c2j2f(aj1 , aj2 , v2, . . . , vk)

...

f(v1, . . . , vk) =
∑

1≤j1,...,jk≤n

c1j1c2j2 . . . ckjkf(aj1 , . . . , ajk)

The same computation for g holds. and it follows that f and g agree on all
k-tuples of vectors if they hold on all k-tuples of basis elements.

Just as we can define linear transformations V and W by arbitrarily defining
their value for each basis element, a k-tensor on V can be defined by assigning
its value for each k-tuple of basis elements.

This is proved in the following theorem where we claim that every k-tensor
is made up of elementary k-tensors and these elementary k-tensors form a basis
of Lk(V ).

Theorem 15.3 Let V be a vector space with basis a1, . . . , ak. Let I = (i1, . . . , ik)
a k-tuple of integers from the set {1, . . . , n}. There is a unique k-tensor φI on
V . such that, for every k-tuple J = {j1, . . . , jk}

φI(aj1 , . . . , ajk) =

{
0 if I 6= J
1 if J = I

}
(79)
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The tensors φI form a basis for Lk(V ) and are called Elementary tensors cor-
responding to the given basis for V.

We will show that these k-tensors form a basis of Lk(V )

Proof We will show that f ∈ Lk(V ) can be written uniquely as a linear
combination of φI . Let dI = f(ai1, . . . , aik) with I = (i1, . . . , ik). Introduce
g =

∑
I fIφI . By the definition of φI , g(ai1, . . . , aik) = dI . By the previous

lemma we can show that f = g.

There exist nk different k-tuples and hence the dimension of Lk(V ) = nk.

15.1 K-Tensor product

Let V and W be vector spaces with basis a1, . . . , ak and b1, . . . , bl respectively.
Then V ⊗W is a vector space with basis (ai, bj) for i = 1, . . . , k and j = 1, . . . , l.
We can denots (a1, bj) by ai⊗ bj . Note the distinction here with cross product;

dim(V ⊗W ) = dim(V )dim(W ) (80)

dim(V ×W ) = dim(V ) + dim(W ) (81)

Recall that Lk(V ) = V ? ⊗ V ? has a dimension nk.
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f ∈ Lk(V ) f : V × . . . × V → R k-tuple of Vs. f(V1, . . . Vk) Basis elements
ofLk(v)

Then f =
∑
dIφI example: < x, y >=

∑n
i=1 xiyi =

∑n
i,j=1 δi,jxiyi =∑n

i=1 φi,i(x, y)

Det[v1, v2] =v1,1v2,2 − v1,2v2,1 (82)

=φ1,2(v1, v2)− φ2,1(v1, v2) (83)

(84)

16.1 Tensor Product

Definition Let f ∈ Lk(V ) and g ∈ Ll(V ). The (k + l) tensor (f ⊗ g) on V is
defined by (f ⊗g)(V1, . . . , Vk+l) = f(V1, . . . , Vk)g(Vk+1, . . . , Vk+l) ∈ hk+l(V v) is
the tensor product of f and g.

Definition Let T : V → W be a linear transformation. The dual transforma-
tion T ? : hk(W )→ hk(v). Let f ∈ Lk(W ) and v1, . . . , vk ∈ V then

(T ?f)(v1, . . . , vk) = f(T (V1), T (V2), . . . , T (V vk)) (85)

T ? is the composite T k and f
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Theorem 16.1 1. T ? is linear

2. T ?(f ⊗ g) = T ?f ⊗ T ?g

3. If S : W → X is a linear transformation, then (S ◦ T )?f = T ?(S?f)

Proof of 2

T ?(f ⊗ g) =f ⊗ g(T (v1), . . . , T (vk+l)) (86)

=f(T (V1), . . . , T (vk))ġ(T (Vk+1, . . . , T (Vk+l)) (87)

=T ?f ⊗ T ?g (88)

(89)

16.2 Change of basis of V

Let ê1, . . . , ên be a basis for V and let d̂1, . . . , d̂n be another basis related to
êi by (d̂1, . . . , d̂n) = (ê1, . . . , ên)C where C is a n × n non-singular matrix.

d̂i =
∑n
j=1 Ci,j êi Covariant

The directed line segment V̄ =
∑n
i=1 viêi is invariant under change of ba-

sis. Let Ṽ be the co ordinates of ~V with respects to the basis d̂i, then Ṽ =
(V1, . . . , Vn) = C−1v = C−1(v1, . . . , vn)→

∑n
i=1 ṽid̂i = (ê1, . . . , ên)CC−1v = ~v

Similarly change of basis does not change a physical tensor

(Er◦t = 1/2~ω(̇~r × ~p)) (90)

ṽ = C−1v → f̃(ṽ1, . . . , ṽk) = f(Cṽ1, . . . , Cṽk)→ f is a covariant tensor.
f ∈ hk(v) = h∗⊗ . . .⊗h∗ in terms of indices f̃(Ṽ1, . . . , ṽk) =

∑
{ir}{js} di1 . . .
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17.1 Change of Basis

• d̂ = êC

• ~V =
∑
viêi =

∑
ṽid̂i

• Ṽ = C−1v

A physical tensor f is a tensor f such that;

fê(v1, . . . , vk) =fd̂(ṽ1, . . . , ṽk) (91)

⇒ fd̂(ṽ1, . . . , ṽk) =fê(Cṽ1, . . . , Cṽk) (92)

Example

< v1, v2 >ê=v
T
1 Iv2 (93)

=

n∑
i=1

v1iv2i (94)

< ṽ1, ṽ2 >d̂=ṽ
T
1 Iṽ (95)
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We now verify the second property.

< Cṽ1, ṽ2 >ê= Ṽ1C
TCṼ2 =< Ṽ1, Ṽ2 >d̂ (96)

For orthogonal C. Therefore the inner product is a tensor in the physical sense.

Example

D(V1, V2)ê =Det(V1, V2)∀i with dim(V ) = 2 (97)

D(Ṽ1, Ṽ2)d̂ =Det(Ṽ1, Ṽ2) (98)

Det(Ṽ1, Ṽ2)ê =Det(C)Det(Ṽ1, Ṽ2) (99)

⇒ D is a pseudo-tensor (100)

Definition Let k ≥ 2 A permutations of the set of integers {1, . . . , k} is a one to
one function mapping this set to itself. Recall permutations from linear algebra
1st year.

If σ and τ are permutations, then σ ◦ τ is also a permutation. Also, σ−1 is a
permutation. The set of all permutations forms the group Sk, with k! elements.

Definition Given 1 ≤ i ≤ k, defined as

ei(j) =

 j, forj 6= i, i+ 1
i+ 1, forj = 1
i, forj = i+ 1

 (101)

ei is an elementary permutation. ei{1, . . . , k} = 1, . . . , i− 1, i+ 1, i, i+ 2, . . . , k
ei ◦ ei = 1

Lemma 17.1 Each σ ∈ Sk equals a composite of elementary permutations.

Proof We will prove this by induction. For 0 ≤ i ≤ k, we say σ fixes the first i
integers if σ(j) = j for 1 ≤ j ≤ i.

If i = k, σ fixes all integers. ⇒ σ = 1 and lemma holds for i = k. Assume
that σ, which fixes the first i integers, can be written as composite of ei’s.

We need to first show that any σ which fixes the first i − 1 integers can be
written as a composite. Let

σ(l) = i for l ≥ i. We can write

σ′ =

{
σ ifl = i

e1 ◦ ei+1 ◦ . . . ◦ el−1, if l > i

}
(102)

⇒ σ = σl−1 ◦ . . . ◦ ei◦′ → Lemma holds by the induction hypotheses.

Definition Let σ ∈ Sk consider the set of pairs i, j, from {1, . . . , k} for which
σ(i) > σ(j). Each pair is an inversion.

If the total number of inversions is off, the sign of σ is negative, otherwise
is is positive.
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18 Lecture 18

Second homework is up next week with a deadline in week 8. Notes on change
of basis are available on Blackboard and may be required for homework 2

Permutation -

σ =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
(103)

Definition Elementary permutation is where there is only one swap of num-
bers.

ei =

(
1 . . . i i+ 1 . . . k
1 . . . i+ 1 i . . . k

)
(104)

Inversion pair (i, j) such that i < j but σ(i) > σ(j).

Lemma 18.1 • If σ equals a composite of m elementary transformations,
then sgn(σ) = (−1)m

• sgn(σ ◦ τ) = sgn(σ)sgn(τ)

• sgn(σ−1 = sgn(σ)

• If p 6= q and if τ is the permutation that exchanges p and q leaving the
others unchanged, then sgn(τ) = −1

Definition Let f ∈ Lk(v) arbitrary. If σ is permutation of {1, . . . , k}, we define
fσ(v1, . . . , vk) = f(vσ(1), . . . , vσ(k))f

σ ∈ Lk(V ).
F is symmetric if fe = f for every elementary permutation e ∈ Sk. f is

alternating if fe = −f for an elementary permutation e ∈ Sk

Set of all alternating tensors is Ak(V ) ⊂ Lk(V ). Consider the set of L1(V ) =
A1(V )

Elementary tensor for k ≥ 2 are not alternating. But linear combinations of
φ1 are.

f = φi,j − φj,i (105)

f(x, y) = xiyj − yixj = −f(x, y) (106)

Lemma 18.2 Let f ∈ Lk(v), let σ, τ ∈ Sk

• The transformation f → fσ is a linear transformation on Lk(V ). More-
over, (fσ)τ = fσ◦τ

• f ∈ Ak(V )⇔ fσ = sgn(σ)f

• If f ∈ Ak and vp = vq for p 6= q, then f(v1, . . . , vk) = 0

Proof
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•

(af + bg)σ =afσ + bgσ ⇒ σ is Linear

(fσ)τ (V1, . . . , Vk) =fσ(Vτ(1), . . . , Vτ(k))

=fσ(W1, . . . ,Wk) With Wi = Vτ(i)

=f(Wσ(1), . . . ,Wσ(k))

=f(Vτ(σ(1)), . . . ,Wτ(σ(k)))

=fσ◦τ (V1, . . . , Vk)

• Write σ as composite of elementary permutations σi, σ = σ1 ◦ . . . ◦ σm
Then fσ = fσ1◦...◦σm = (−1)mf = sgn(σ)f

• For Vp = Vqp 6= q, then f(v1, . . . , vp, . . . , vq, . . . , vk) =
f(v1, . . . , vq, . . . , vp, . . . , vk) On the other hand, let τ exchange p and q.

fτ (v1, . . . , vp, . . . , vq, . . . , vk) =f(v1, . . . , vq, . . . , vp, . . . , vk) (107)

=− f(v1, . . . , vp, . . . , vq, . . . , vk) (108)

⇒ f(v1, . . . , vp, . . . , vq, . . . , vk) = 0 (109)

Lk(V ) with k > 0, Ak(V )o < k ≤ dim(V ) Let a1, . . . an be a basis of V. If
f, g ∈ Ak(V ) and if f(ai,1, . . . , ai,k) = g(ai,1, . . . , ai,k) for every ascending k-
tuple of integers from the set {1, . . . , n}, then f = g.

Lk(V ) : f(a1, a1)f(a1, a2)f(a2, a1)f(a2, a2) (110)

Ak(V ) : f(a1, a2) (111)

(112)
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Alternating tensors

Lemma 19.1 let a1, . . . , an be an basis of V . If f&g are alternating k-tensors
on V , and if;

f(ai1, . . . , aik) = g(ai1, . . . , aik) (113)

for every ascending k-tuple of integersI = (i1, . . . ik) from the set 1, . . . n

Proof Given Lemma 26.2 in Munkres, we need to show that f and g agree on all
k-tuples of basis elements (unordered) Let f = (j1, . . . , jk) be an unordered k-
tuple if 2 of the indices of f are equal then f(aj1, . . . , ajk) = g(ai1, . . . , ajk) = 0.If
all indices are different, let σ be a the permutation such that I = (jσ(1), . . . , jσ(k))
is ascending. Then f(aj1, . . . ajk) = sgn(σ)f(ajσ(1), . . . , ajσ(k)) similar calcula-
tions holds for g. Since f and g agree they agree on f.
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Proposition 19.2 A basis for Ak(V ) is given by;

ψI =
∑
σ∈Sk

sgn(σ)(φI)
σ, whereI = (i1, . . . , ik) (114)

Is an ascending k-tuple from the set {1, . . . , n}. φI is a basis element of
Lk(V ).

It’s properties are as follows;

• For every ascending k-tuple J = (j1, . . . , jk)

ψI(aj1, . . . , ajk) =

{
0 ifI 6= J
1 otherwise

}
(115)

• ψτI = sgn(τ)ψI

Proof From the definition, ψI(aj1, . . . , ajk) =
∑
σ∈Sk sgn(σ)φI(ajσ(a), . . . , ajσ(k))

At most 1 term in the sum is non-vanishing, namely when I = (jσ(1), . . . , jσ(k))
Since I and F are ascending, this only occurs for I=J. then ψ1 = 1 else 0.

ψτI =
∑
σ∈Sk

sgn(σ)φτ◦σI (116)

=sgn(τ)
∑
σ∈Sk

sgn(τ ◦ σ)φτ◦σI (117)

τ ◦ σ runs over all elements in Sk if fσ does.

dim(Ak(V )) = nCk =
n!

(n− k)!k!
(118)

Recall dim(Lk(V )) = nk Let X = [x1, . . . , xn] be a n by n matrix Then Det
X = ψ1,...,n(x1, . . . , xn). Levi Ceuta symbol.

For k-tensors f, g ∈ L∗(V ), we defined the tensor product ⊗ : Lk(V ) ×
Ll(V )→ Lk+l(V )

(f ⊗ g)(V1, . . . , vk+l) = f(V1, . . . , Vk)g(Vk+1, . . . , Vk+l) (119)

(f ⊗ g)(V1, V1) = f(V1)g(V1) 6= 0 (120)

⇒ ⊗ does not map alternating tenosrs to alt tensors. (121)

We want to construct a product ∧ : Ak(V )×Al(V )→ Ak+l(V )

Definition A : Lk(V )→ Ak(V ) by AF =
∑
sgn(σ∈Sk sgn(σ)Fσ

• A is linear

• AF is alternating
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Then

f ∧ g =
1

k!l!
A(f ⊗ g) (122)

=
1

k!l!

∑
sgn(σ)(f ⊗ g)σ (123)

(124)

Let σ = σf ◦ σg, σf
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Theorem 20.1 The wedge product has the following properties;

• Asscociativity: f ∧ (g ∧ h) = (f ∧ g) ∧ h

• Homogeneity: (cf) ∧ g = c(f ∧ g) = g ∧ (cg)

• Distributivity: If f and g have the same order,

(f + g) ∧ h = f ∧ h+ g ∧ h (125)

h ∧ (f + g) = h ∧ f + h ∧ h (126)

• Anti commutativity: if f and g have the same orders k and l respectively
then,

g ∧ f = (−1)klf ∧ g (127)

• Given a basis aq, . . . , an for V , let φi denote the dual basis for V ?, and
let ψI denote the corresponding elementary alternating tensors. If I =
(i1, . . . , ik) is an ascending k-tuple of integers from {1, . . . , n}, then;

ψI = φi1 ∧ φi2 ∧ . . . ∧ φik (128)

• If T : W → W is a linear transformation, and if f and g are alternating
tensors on W , then

T ?(f ∧ g) = T ?f ∧ T ?g (129)

Definition Given x ∈ Rn, we define a tangent vector to R at x to be a pair
(x; v), where v ∈ Rn. The set of all tangent vectors to Rn at x forms a vector
space if we define;

(x; v) + (x;w) = (x; v + w) (130)

c(x; v) = (x; cv) (131)
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To interpret this definition, we must note that x and v are both members
of Rn but play different roles. We think of x as a point of the metric space Rn
and picture it as a dot. We think of v as a member of the vector space Rn and
picture it as an arrow. Thus (x; v) is an arrow with starting point x.

Definition Let A be open in Rk or Hk Let α : A → Rn be of class Cr. Let
x ∈ A, and p = α(x). We define a linear transformation

α? : Tx(Rk)→ Tp(Rk) (132)

by the equation;
α?(x; v) = (p;Dα(x).v) (133)

It is said to be the transformation induced by the differentiable map α.
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21.1 Tensor fields

Let A ∈ Rn, open. A k-tensor field in A is a function w, such that:

w(x) ∈ Lk(Tx(Rn)) (134)

For each x ∈ A.
If w(x) ∈ Ak(Tx(Rn))∀x ∈ Rn, then w is a k-form:

w ∈ Ωk(A) (135)

If f is a function on A (f : A→ R), thenf ∈ Ω0(A) example: 1-forms

φ̃i(x)(x; ej) =

{
1 if i = j
0 if i 6= j

}
(136)

Elementary k-forms For an ascending k-tuple I = (i1, . . . ik), then ψ̃I(x) =
φ̃ik(x)(x; ej)∧ . . .∧ φ̃ik(x)(x; ej) and w(x) =

∑
I bI(x)ψI(x), with bI(x) : Rn →

R.
Let f : Rn → R ∈ Ω0(A), Recall Df = ( ∂f∂x1

, . . . ∂f∂xn ) is a linear transforma-

tion Df ∈ L1(Rn) Taking the derivative, a zero form becomes a 1 form.
We introduce ”d” the exterior derivative:

d : Ωk(A)→ Ωk+1(A) (137)

Definition df(x)(x; v) = Df(x)v̇ df is called the differential of f. Note that
there is no infintesimal component of this. d acts linearly d(af+bg) = adf+bdg

Definition The ith projection function

πi : Rn → R, πi(x) = xi (138)
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Lemma 21.1
dπi(x) = φ̃i (139)

Proof

πi(x)(x; v) =Dπi(x)v̇ = (0, . . . , 1, . . . , 0)v̇ = Vi (140)

φ̃i(x)(x; v) =Vi (141)

It is common to write xi for πi such that φ̃i = dxi. dxi is not an infintesimal
small quantity:

dx 6= lim
∧x→0

∧x (142)

If I is a k-tuple, then

dxI = dxi1 ∧ . . . ∧ dxik (143)

w(x) =
∑
I

bI(x)dxI (144)

For k > 0, d acts on w such that:

dw =
∑
I

dbI(x) ∧ dxi (145)

Determine dw for w ∈ Ωk for k = 0, 1, 2, 3 in R3, w =
∑
I fIdxI For k = 0 we

have:

w =f (146)

dw =D1fdx1 +D2fdx2 +D3dx3 (147)

=

3∑
i=1

∂f

∂xi
dxi (148)

For k = 1 we have:

dw =d(

3∑
i=1

fidxi) (149)

=

3∑
i=1

dfi ∧ dxi (150)

=

3∑
i=1

Djfidxj ∧ dxi (151)

=D1f1dx1 ∧ dx1 + . . . (152)

Since dxi ∧ dxi = 0 (153)

dw =D2f1dx2 ∧ dx1 +D3f1dx3 ∧ dx1 +D1f2dx1∧ (154)

dx2 +D3f2dx3 ∧ dx2 +D1f3dx1 ∧ dx3 +D2f3dx2 ∧ dx3
(155)

=(D1f2 −D2f1)dx1 ∧ dx2 + (D1f3 −D3f1)dx1∧ (156)

dx3 + (D2f3 −D3f2)dx2 ∧ dx3 (157)
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For k=2

dq =d(f12dx1 ∧ dx2 + f23dx2 ∧ dx3 + f13 ∧ dx3) (158)

=D3f12dx3 ∧ dx1 ∧ dx2 +D1f23dx1 ∧ dx2∧ (159)

dx3 +D2f13dx2 ∧ dx1 ∧ dx3 (160)

=D3f12 +D1f23 −D2f13 (161)

k=3 dw=0

22 Lecture 22

22.1 Exterior Derivative - ”d”

df(x)(x; v) = Df(x).v (162)

f ∈ Ω0(A) (163)

df ∈ Ω1(A) (164)

πi(x) = xi = xi(x) (165)

dπi = φ̃i = dxi (166)

dxi1 ∧ . . . ∧ dxik = dxI (167)

w =
∑
[I]

bIdxI =
∑
[I]

bI ψ̃i (168)

dw =
∑
[I]

dbI ∧ dxI (169)

We will now list a few useful properties;

Theorem 22.1 Let w ∈ Ωk(A) and η ∈ Ωl(A)

1. d(w ∧ η) = dw ∧ η + (−1)kw ∧ dη

2. d(dw) = 0

3. d is linear

Proof •
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w =
∑
[I]

fIdxI (170)

η =
∑
[J]

gJdxJ (171)

d(w ∧ η) =
∑
[I][J]

d(fIgJ)dxI ∧ dxJ (172)

Using the product rule (173)

d(fIgJ)(x)(x; v) (174)

=DfI(x).vgJ(x) + fIDgJ(x).v (175)

=(dfIgJ + fIdgJ)(x)(x; v) (176)

subbing this into previous reuslt (177)

dw ∧ η + (−1)kw ∧ dη (178)

d(df) =d(

n∑
i=1

Difdxi) (179)

=

n∑
i,j=1

DjDifdxj ∧ dxi (180)

=0 (181)

w ∈ Ωk(A) (182)

d(dw) =d
∑
[I]

dfI ∧ dxI = 0 (183)

• Exact form w is a form such that w = dα for some α

• Closed form w os a form such that dw=0

22.2 Hodge *-Operator

There is nothing in the book about this so notes will be made available online.

∗ : Ωk(A)→ Ωn−k(A) (184)

Let w =
∑
[I]

fIdxI (185)

∗w =
∑
[I]

εIJfIdxJ (186)

Where
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1. I is the ascending k-tuple given (1, . . . , n)/I

2. εIJ = sgn(i1, . . . , ik, j1, . . . , jn−k) = ψIJ

Example

w =dx2Λdx3 + dx1dx2 ∈ R3 (187)

∗w =ε231dx1 + ε123dx3 = dx1 + dx3 (188)

1)∗f = fdxIwithI = (1, . . . , n) ∗ ∗w = (−1)k(n−k)wforw ∈ Ωk(A)

22.3 Differential Forms and ∧
Let A ∈ Rn open and let e1, . . . , en be a basis of Rn. Let f : a → R, and
G(x) = (x; g(x)), a vector field.

22.3.1 Gradient

∇f(x) = (x;
∑n
i=1)f(x)ei)~F = −∇U

22.3.2 Divergence

(∇G)(x) =
∑n
i=1Digi(x)

22.3.3 Introduce the (musical) isomorphism ξ

ξ : Vector fields on A→ Ω−1(A) (189)

ξG =

n∑
i=1

gidxi,where, G(x) = (x;

n∑
i=1

giei) (190)

df =

n∑
i=1

Difdxi = ξ(∇f) (191)

∗d ∗ w = ∗ d
n∑
i=1

(−1)i−1gidx(1,...,n)/i (192)

= ∗
n∑
i=1

(−1)i−1Digidxi ∧ dx(1,...,n)/i (193)

=

n∑
i=1

Digi = ∇G (194)

In R3:

(∇×G)(x)w = ξG (195)

∗dw = ξ(∇×G) (196)
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23 Lecture 23

23.1 Exterior Derivatives

d : Ωk(A)→ Ωk+1(A) (197)

w =
∑
[I]

fIdxi (198)

dw =
∑
[I]

dfI ∧ dxi (199)

df =
∑
i

Difdxi (200)

d2w = 0 (201)

23.2 Hodge ? operator

? = Ωk(A)→ Ωn−k(A) (202)

?w =
∑
[I]

εIJfIdxj , with, (203)

εIJ = sgn(i1, . . . , ik, j1, . . . , jn−k) (204)

J = (j1, . . . , jn−k) = (1, . . . , n)/I (205)

23.3 Maxwell equations

• Electric Field: E(t, x) ∈ Tx(R3)

• Magnetic Field: B(t, x) ∈ Tx(R3) Where x is a vector in R3 and t is a
time unit in R.

23.3.1 Homogenous equations

∇. ~B = 0 (206)

∇xE +
∂B

∂t
= 0 (207)

23.3.2 Non-homogneous equations

Sourceless

∇.E = o (208)

∇xB +
∂E

∂t
= 0 (209)
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F ∈ Ω2(R4)(210)

F = E1dt ∧ dx1 + dt ∧ dx2 + dt ∧ dx3 −B3dx1 ∧ dx2 +B2dx1 ∧ dx3 −B1dx2 ∧ dx3(211)

(212)

Freeform of the equation: Which terms to contribute:

dF = (D2E1 −D1E2 −DtB3)dt ∧ dx1 ∧ dx2 + (D3E2 −D2E3 −DtB1)dt ∧ dx2 ∧ dx3 + (D3E1 −D1E3 +DtB2)dt ∧ dx1 ∧ dx3 − (D3B3 +D2B2 +D1B1)dx1 ∧ dx2 ∧ dx3(213)

dF = 0⇔ {∇.B = 0, text∇xE +
∂B

∂t
= 0} (214)

?F = ?(E1dt ∧ dx1 + . . .)(215)

= εt123E1dx2 ∧ dx3 + . . .(216)

= E1dx2 ∧ dx3 ⇒ Vector potential A ∈ Ω−1(R4) such that F = dA = F

(
E → −B
B → −E

)
(217)

⇒ d ? F = 0⇔ non homogenous, maxwell equation(218)

23.4 The action of a differentiable map

α : A→ Rn ∈ C∞ (219)

Recall pushforward α? : Tx(Rk)→ Tα(x)(Rn) (220)

α?(x; v) = (α(x), Dα(x).v) (221)

Recall a coordinate map of a manifold:

T : V →W induces a map (pull-back) (222)

T ? : Lk(W )→ Lk(V ) (223)

(T ?f)(v1, . . . , vk) = f(T (v1), . . . , T (vk), with f ∈ Lk(W ) (224)

α? is a map between vector spaces which implies α? or α induces a pull back
map on α?.

Definition Let A ∈ Rk open, and B ∈ Rn open. α : A → Rn such that
α(A) ⊂ B, Then α?Ωl(B)→ Ωl(A)

(α?w)(x)((x; v1), . . . (x; vl)) = w(α(x))(α?(x; v1), . . . , (α?(x; vl)) (225)

Theorem 23.1 Let A ∈ Rk, B ∈ Rm, C ∈ Rn all open.

• α : A→ Rm such that α(A) ⊂ B
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• B → Rn such that β(B) ⊂ C

w, η ∈ Ωp(C), θ ∈ Ωl(C).

1. β? is linear. β?(aw + bη) = aβ?w + bβ?η

2. β?(w ∧ θ) = β?w ∧ β?θ

3. (β ◦ α)? = α?(β?w)

Theorem 23.2 Let A ⊂ Rk, open and α : A → Rn, let x ∈ Rk and α(x) = y.
Let dxi and dyj be the elemetnary 1-forms in Rk and Rn respectively. Then:

α?(dyi) = dαi (226)

nb:

α =

 α1

...
αn

 (227)

24 Lecture 24

24.1 The action of a differentiable map on differential
forms

Proof Followinf the definintion of α?:

(α?(dyi))(x)(x; v) =dyi(y)(α?(x; v)) (228)

=dyi(y)(y,Dα.v) (229)

=ith component of Dα.v (230)

=

k∑
j=1

Djαi.vj (231)

=

k∑
j=1

∂αi
∂xj

dxj(x)(x; v) (232)

⇒ removing the arguments (233)

α?(dyi) = dαi (234)

If I = (i1, . . . , ik) is an ascending k-tuple from 1, . . . , n, then:

α?(dyI) = (det
∂αI
∂x

)dx1 ∧ . . . ∧ xk (235)

with;

Theorem 24.1 Let w ∈ Ωl(B), B open in Rn and α(A) ⊂ B Then;

α?(dw) = d(α?w) (236)
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Proof 1. l = 0, w = f, x ∈ A, y = α(x) ∈ B LHS:

α?(df) =α?(

n∑
i=1

Difdyi) (237)

=

n∑
i=1

((Dif) ◦ α)dαi (238)

RHS:

d(α?f) =d(f ◦ α) (239)

=

k∑
j=1

Dj(f ◦ α)dxj (240)

Using the chain rule:

D(f ◦ α)(x) =Df(y).Dα(x) (241)

Dj(f ◦ α)(x) =

n∑
i=1

Dif(y)Djαi(x) (242)

d(α?f) =

k∑
j=1

n∑
i=1

(Dif(y))Djαi(x)dxj (243)

=

n∑
i=1

(Dif(y))dαi = α?(df) (244)

2. l > 0. Lineariry of d and α? imply that a proof for w = fdyI is sufficient.
We begin with the RHS:

α?(dw) =α?(df ∧ dyI) (245)

=α?(df) ∧ α?(dyI) (246)

With the LHS:

d(α?w) =d(α?(fdyI)) (247)

=d(α?f ∧ α?(dyI)) (248)

=d(α?f) ∧ α?(dyI) + α?f ∧ d(α?(dyI)) (249)

Since d(α?(dyI)) = d(dαi1 ∧ . . . ∧ dαik) = 0

25 Lecture 25

Definition Let w ∈ Ωk(A), then it is uniquely written as w = fdx1∧ . . .∧dxk.
Then we define ∫

A

W =

∫
A

f. (250)
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Integration over Yα0 . Let w ∈ Ωk(B) with B open in Rn and such that Yα ⊂ B;∫
Yα

w =

∫
A

α?w (251)

β(B) = α(A) = Y

∫
Yα

f =

∫
B

(f ◦ β)V (Dβ) = sameintegralparameterisedoverA (252)

Theorem 25.1 Let g : A→ B be a diffeomorphism of open sets. Assume that
Det[Dg] does not change sign on A. Let β : B → Rn ∈ C∞, Y = β(B). Let
α = β ◦ g such that α(A) = Y . Let w ∈ Ωk(C) with C ∈ Rn such that Y ⊂ C,
then; ∫

Yα

w = ±
∫
Yβ

, if it exists,± = sgn(det(Dg)) (253)

Proof Set η = β?w, then:∫
Yα

w =

∫
A

α?w =

∫
A

g?(β?w) =

∫
A

g?η (254)

Then

g?η =(f ◦ g)g?(dy1 ∧ . . . ∧ dyk) (255)

=(f ◦ g)Det(Dg)dx1 ∧ . . . ∧ dxk (256)∫
A

g?η =

∫
A

(f ◦ g)Det(Dg) (257)

=

∫
B

fDet(Dg)|Det(Dg−1) (258)

=sgn(Det(Dg))

∫
B

f (259)

∫
Yα

w = sgn(Det(Dg))

∫
B

η = sgn(Det(Dg))

∫
Yβ

w (260)

∫
M
w =

∫∫
U
α?w, α : W → V ⊂M .

25.1 Orientable Manifolds

See book for diagram on orientation reversing and preserving. In general, let
h : Rn → Rn, given by h(x) = C.x.

• If detC > 0⇒ h is orientation preserving

• If detC < 0⇒ h is orientation reversing
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Recall pushforward maps as linear maps on the tangent spaces. A diffeomor-
phism g : A→ B induces a pushforward map on tangent spaces. g? : Tx(A)→
Tg(x)(B). Recall that g?(x)(x; v) = (g(x);Dg.v).

• If detDg > 0⇒ g is orientation preserving

• If detDg < 0⇒ g is orientation reversing

We want to say whether or not our transition function is orientation reversing
or preserving. Let M be a k-manifold. Given αi : Ui → Vi ⊂ M for i = 0, 1.
with V0 ∩ V1 6= 0. We say α0 & α1 overlap positively if α−11 ◦ α

−1
0 is orientation

preserving.

26 Lecture 26

Consider diffeomorphism, g : A → B. This induces pushforward map g?(x) :
Tx(Rk) → Tg(x)(Rk), x ∈ A. g?(x; v) = (g(x), Dg(x).v). gi is orientation pre-
serving if Det(Dg) > 0 and orientation reversing if Det(Dg) < 0.

If g = α−11 ◦ α0 is orientation preserving, α0 and α1 overlap positively, and
otherwise negatively.

Definition M is orientable if it can be covered by coordinate patches, each
pair of which overlap positively. Otherwise it is non orientable.

Definition An orientation of M is a set of coordinate patches which cover M
and which overlap positively pairwise, together with all patches which overlap
these positively.

Definition An oriented manifold is a manifold together with a choice of orien-
tation.

Orientation of a 1-manifold defines a unit tangent vector field. Let α(t0) = p.
The tangent vector T (p) is,

(p;
Dα(t0)

||Dα(t0)||
) (261)

β(s0) = p then;

= (p;
Dβ(s0)

||Dβ(s0)
) (262)

Oriented 1-manifold=directed curve - refer to book
Allow α : U → V with U ⊂ L1. L1 = x ∈ R, x ≤ 0.

26.1 (n− 1) manifold in Rn

Here we can define a unit normal vector α : U → V and let α(x) = p ∈ M
column vecotrs of Dα(p) gives us a basis for Tp(M).

(p,
∂α

∂xi
) for i = 1, . . . , n (263)

Det(~n,Dα(p))⇒ This fixes ~n(p)
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27 Lecture 27

27.1 Recap

• Orientable manifolds g = α−11 ◦ α0 : W0 → W1 α0 and α1 overlap
positively if detDg > 0.

• (n-1) manifold M in Rn orientation⇒ unit normal vector ~n field to M.

~n(p) ∈ Tp(Rn) such that ||~n|| = 1 and, (264)

det(~n,
∂α

∂x1
, . . . ,

∂α

∂xn−1
) > 0 (265)

and n is perpendicular/orthognal to all partial derivatives of α for all xi

Mobius strip is an example of a non orientable manifold. In general dimensions,
how can we reverse the orientation of M? Taking the negative of the basis
vectors. This is orientation reversing map.

Definition The reflection: r : Rk → Rk defined as;

r(x1, . . . , xk) = (−x1, . . . , xk) (266)

for k > 1, r : Hk → Hk. for k=1, r : H1 → L1.

Definition Given an oriented manifold M, with coordinate patches αi belong-
ing to the orientation, then the reverse orientation is given by:

βi = αi ◦ r : r(Ui)→ Vi (267)

DetD(α−1i ◦ βi) = DetDr = −1 (268)

thus they overlap negatively.

We are developing this technology of orientation in order to introduce stokes
theorem.

Theorem 27.1 Let k ≥ 1, if M is orientable with non-empty boundary (which
is itself a manifold), then the δM (the boundary) is an orientable manifold.
(proof omitted). By restricting orientation for the boundary of M, by using the
similar proof in the beginning of the course we can prove this.

Definition With M as above and given an orientation of M, then we say that
the induced orientation is defined by;

• k even: restricting coordinate patches on M.

• k odd: the orientation opposite to restricting the orientation on M.

Example In copy book
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27.2 Integration on an oriented manifold

M is an oriented k manifold. ω ∈ Ωk(B), B ⊂ Rn open. M ⊂ B.

• Cover M by coordinate patches which belong to its orientation.

• Choose a partition of unity φ1, . . . , φl on M which is dominated by the
covering.

∫
M

ω =

l∑
i=1

[

∫
φiω] (269)

We can do this to our coordinate patches;∫
M

φiω =

∫
Uj

α?j (φiω) (270)

for some αj : Uj → Vj .

27.2.1 Generalised Stokes Theorem

Theorem 27.2 M is a k-manifold, and give δM the induced orientation. Let
ω ∈ Ωk−1(B), then∫

M

dw =

∫
δM

wifboundarynonempty, 0otherwise (271)

M is a compact oriented k-manifold in Rn. δM has the induced orientation
ω ∈ Ωk−1 such that M ⊂ B. We will not prove the general case of stokes
theorem but we will use it to derive the divergence theorem.

Example Refer to copy book

ω = xdy − ydx ∈ Ω1(R2) (272)

We have the coordinate patch α : A→ R2 whereA = (θ, w) ∈ H2| − π < θ < π, ω ∈ [0, 1].
and we define α as:

α(θ, ω)− ((1− ω)cosθ, (1− ω)sinθ) = (x, y) (273)
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Determine the pull back equation α?ω

α?ω =(1− w)cosθd((1− w)sinθ) (274)

−(1− w)sinθd((1− w)cosθ) (275)

=(1− w)2dθ (276)

α?(dω) =d(α?) = z(1− w)dθ ∧ dw (277)∫
M

dω =

∫
A

α?dω = z

∫
A

(1− w)dθ ∧ dw = 2π (278)∫
δM

w =

∫
(−π,π)

α?ω (279)

=

∫
(−π,π)

dθ = 2π (280)

(281)

Theorem 27.3 (Gauss’ Theorem)∫
M

∇GdV =

∫
δM

G.NdA (282)

Where M is a n-manifold in Rn

In order to prove this theorem, we must prove some preliminary results.
Orientation on M ↔ unit normal vector field

N(p) = (p, ~n(p)) ∈ Tp(Rn) (283)

where ~n(p) ⊥ Tp(M) and ~n(p) ⊥ ∂β
∂xi

for i ∈ [1, n− 1] and det(~n,Dβ) > 0. The
solution for n=3:

seecopybook. (284)

For general n:
ci(p) = (−1)i−1det(Dβî (285)

βî =



β1
...

βi−1
βi+1

...
βn


(286)

Lemma 27.4 Let G be a vector field in Rn with B ∈ Rn, open and M ⊂ B.
Let

G(y) = (y; g(y)) = (y;

n∑
i=1

gi(y)ei) (287)
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ω = ? ξG = ?

n∑
i=1

gidyi (288)

=

n∑
i=1

(−1)i=1gidy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 ∧ . . . ∧ dyn (289)

(290)

Lemma 27.5 ∫
M

ω =

∫
M

G.NdV (291)

Proof Assume ω is supported on a sinlge coordinate patch β : U → B :∫
M

ω =

∫
U

β?ω =

∫
U

∑
i

(−1)i−1(gi ◦ β)detDβî (292)

Now turning our attention to the RHS:∫
M

GNdV =

∫
U

(G ◦ β)(N.β)V (Dβ) (293)

=

∫
U

(g ◦ β)C(β(x)) (294)

=

∫
U

n∑
i=1

(gi ◦ β)Ci(β(x)) (295)

one notices, that the left hand side is infact equal to the rhs.

Theorem 27.6 (Gauss Theorem) G is a tangent vector field in Rn. M is
an orientable n-dim manifold with boundary δM . Let N be the outward pointing
unit vector field on Mδ. Then;∫

M

∇GdV =

∫
δM

G.NdA (296)

Refer to copy book for diagram:

Proof Using the lhs off gauss theorem which is also the RHS of stokes theorem;

dω =d ?

n∑
i=1

gidyi (297)

=∇Gdy1 ∧ . . . ∧ dyn (298)∫
M

dω =

∫
∇Gdy1 ∧ . . . ∧ dyn (299)

∫
M

dy1 ∧ . . . ∧ dyn =

∫
β?η =

∫
(h ◦ β)detDβ (300)

natural orientation 0 < detDβ = V (Dβ)
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28 Lecture 29

missed

29 Lecture 30

Recap from last lecture:

•

α?ω = ω(u+ v, u− v, u2 + v2)(u+ v, u− v, u2 + v2;
v1 + v2
v1 − v2

2uv1 + cvv2

) (301)
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