1. Say our two minimal features are the number of ghosts within 1 step of Pacman (F_g) and the number of food pellets within 1 step of Pacman (F_p). You’ll notice that these features depend only on the state, not the actions you take. Keep that in mind as you answer the next couple of questions. For this pacman board:

Extract the two features (calculate their values).

2. With Q Learning, we train off of a few episodes, so our weights begin to take on values. Right now $w_g = 100$ and $w_p = -10$. Calculate the Q value for the state above.

3. We receive an episode, so now we need to update our values. An episode consists of a start state s, an action a, an end state s', and a reward r. The start state of the episode is the state above (where you already calculated the feature values and the expected Q value). The next state has feature values $F_g = 0$ and $F_p = 2$ and the reward is 50. Assuming a discount of $\gamma = 0.5$, calculate the new estimate of the Q value for s based on this episode.

4. With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.
2 Odds and Ends

1. What kinds of MDPs can be solved with expectimax search? What advantages and disadvantages does value iteration have over expectimax on these problems?

2. When using features to represent the Q-function is it guaranteed that the feature-based Q-learning finds the same optimal Q^* as would be found when using a tabular representation for the Q-function?

3. What are differences between Q-learning and TD learning?

4. When performing Q-learning with ϵ-greedy action selection, is it a good idea to decrease ϵ to 0 with time? Why or why not? Remember that ϵ is the (small) probability that you choose a random action, and $1 - \epsilon$ is the (large) probability you act on your current policy.