Announcements

- Project 2 due Friday 5pm
- Contest 2 (race, now adversarial!!) due Sunday midnight
- Homework 4 exceptionally due Tuesday midnight
 - Monday is a holiday!

Office Hours:
- I am worried that you are guessing on homework.
- Please attend office hours to get any things you are unsure about squared away.
CS 188: Artificial Intelligence
Markov Decision Processes II

Instructor: Anca Dragan
University of California, Berkeley
[These slides adapted from Dan Klein and Pieter Abbeel]
Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
We’re doing way too much work with expectimax!

Problem: States are repeated
 - Idea: Only compute needed quantities once

Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Optimal Quantities

- The value (utility) of a state \(s \):
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state \((s,a)\):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

0 Recursive definition of value:

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Time-Limited Values

- Key idea: time-limited values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
\textbf{k=0}

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=4

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 6 ITERATIONS

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Values after 8 iterations:

- Top left cell: 0.63
- Top middle cell: 0.74
- Top right cell: 0.85
- Rightmost cell: 1.00
- Middle left cell: 0.53
- Middle cell: 0.57
- Middle right cell: -1.00
- Bottom left cell: 0.42
- Bottom middle cell: 0.39
- Bottom right cell: 0.26

Additional parameters:
- Noise = 0.2
- Discount = 0.9
- Living reward = 0
k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=10$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values

\[V_0(\quad) \quad V_1(\quad) \quad V_2(\quad) \quad V_3(\quad) \quad V_4(\quad) \]
Value Iteration
Value Iteration

0 Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

0 Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right]$$

0 Repeat until convergence

0 Complexity of each iteration: $O(S^2A)$
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[
V_k+1(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]

Assume no discount!

\[
S: 1+2=3 \\
F: 1 \\
5\times(2+2)+.5\times(2+1)=3.5
\]

\[
V_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
V_1 = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}
\]

\[
V_2 = \begin{bmatrix} S: 1+2=3 \\ F: 1 \\ 5\times(2+2)+.5\times(2+1)=3.5 \end{bmatrix}
\]
Example: Value Iteration

<table>
<thead>
<tr>
<th>V_2</th>
<th>3.5</th>
<th>2.5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>V_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Convergence*

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1
- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
- That last layer is at best all R_{MAX}.
- It is at worst R_{MIN}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
Policy Extraction
Let’s imagine we have the optimal values $V^*(s)$

How should we act?

It’s not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values.
Let’s think.

- Take a minute, think about value iteration.
- Write down the biggest question you have about it.
Policy Methods
Problems with Value Iteration

- Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
$k=12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

Alternative approach for optimal values:

- **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
- **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges

This is **policy iteration**

- It’s still optimal!
- Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

0 Expectimax trees max over all actions to compute the optimal values

0 If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state
 0 ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

0 Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy.

0 Define the utility of a state s, under a fixed policy π:

$$V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi$$

0 Recursive relation (one-step look-ahead / Bellman equation):

$$V^\pi(s) = \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$$
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

 \[V_0^\pi(s) = 0 \]

 \[V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')] \]

- Efficiency: \(O(S^2) \) per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Policy Iteration
Policy Iteration

- **Evaluation**: For fixed current policy \(\pi \), find values with policy evaluation:
 - Iterate until values converge:

 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement**: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

 \[
 \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to…
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
Next Time: Reinforcement Learning!