Announcements

- Homework 1: Search
 - Due yesterday
 - “Show Answer”

- Project 1: Search
 - Due Friday 5pm

- Contest 1: Search – optional but fun
 - Due Sunday

- State space practice on piazza – coming up

- Homework 2: CSPs
 - Due Monday
Today

- Efficient Solution of CSPs
- Local Search
Constraint Satisfaction Problems

N variables
domain D
constraints
Standard Search Formulation

- Standard search formulation of CSPs

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- We’ll start with the straightforward, naïve approach, then improve it
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs.

- **Idea 1: One variable at a time**
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step.

- **Idea 2: Check constraints as you go**
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called *backtracking search* (not the best name).

- Can solve n-queens for $n \approx 25$.
Backtracking Search

```python
function BACKTRACKING-SEARCH(csp) returns solution/failure
    return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
    if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
    for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if value is consistent with assignment given CONSTRAINTS[csp] then
            add {var = value} to assignment
            result ← RECURSIVE-BACKTRACKING(assignment, csp)
            if result ≠ failure then return result
            remove {var = value} from assignment
        return failure
```

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
Backtracking Search

1. fix ordering
2. check constraints as you go

how should we improve it?
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?
Filtering

Keep track of domains for unassigned variables and cross off bad options
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]
Video of Demo Coloring – Backtracking with Forward Checking
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - *Constraint propagation*: reason from constraint to constraint
An arc $X \rightarrow Y$ is \textit{consistent} iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking?
Enforcing consistency of arcs pointing to each new assignment
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

function \text{AC-3}(csp) \text{ returns} the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then
 for each \(X_k\) in \text{NEIGHBORS}[X_i] do
 add \((X_k, X_i)\) to queue

function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \text{ returns} true if succeeds
removed \leftarrow false
for each \(x\) in \text{DOMAIN}[X_i] do
 if no value \(y\) in \text{DOMAIN}[X_j] allows \((x, y)\) to satisfy the constraint \(X_i \leftarrow X_j\)
 then delete \(x\) from \text{DOMAIN}[X_i]; removed \leftarrow true

0 Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
0 … but detecting all possible future problems is NP-hard – why?
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!
Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph
Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph
Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Value Ordering: Least Constraining Value

- Given a choice of variable, choose the *least constraining value*
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes 1000 queens feasible
Demo: Coloring -- Backtracking + Forward Checking + Ordering
Iterative Improvement
Iterative Algorithms for CSPs

- Local search methods typically work with “complete” states, i.e., all variables assigned

To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators *reassign* variable values
- No fringe! Live on the edge.

Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with $h(x) = \text{total number of violated constraints}$
Example: 4-Queens

0 States: 4 queens in 4 columns \((4^4 = 256\) states)
0 Operators: move queen in column
0 Goal test: no attacks
0 Evaluation: \(c(n) = \) number of attacks
Video of Demo Iterative Improvement – n Queens
Video of Demo Iterative Improvement – Coloring
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

![Graph showing CPU time vs. critical ratio](image)
Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

- Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure – turns out trees are easy!

- Iterative min-conflicts is often effective in practice
Local Search
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)

- Local search: improve a single option until you can’t make it better (no fringe!)

- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's bad about this approach?

- What's good about it?
Hill Climbing Diagram

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?
Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
            schedule, a mapping from time to "temperature"
  local variables: current, a node
                   next, a node
                   T, a "temperature" controlling prob. of downward steps

  current ← MAKE-NODE(INITIAL-STATE[problem])
  for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^ΔE/T
```
Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: \(p(x) \propto e^{\frac{E(x)}{kT}} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways
Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
Next Time: Adversarial Search!