CS 188: Artificial Intelligence

Search Continued

Instructors: Anca Dragan, Sergey Levine

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel; ai.berkeley.edu]
Recap: Search
Search

- Search problem:
 - States (abstraction of the world)
 - Actions (and costs)
 - Successor function (world dynamics):
 - \{s' | s, a -> s'\}
 - Start state and goal test
BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path. How?
Uniform Cost Search
Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ϵ, then the “effective depth” is roughly C^*/ϵ
 - Takes time $O(b^{C^*/\epsilon})$ (exponential in effective depth)

- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\epsilon})$

- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- Is it optimal?
 - Yes! (Proof via A*)
Uniform Cost Issues

- Remember: UCS explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location

- We’ll fix that soon!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]
Video of Demo Empty UCS
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
Example: Pancake Problem

Cost: Number of pancakes flipped
Example: Pancake Problem

BOUND S FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n. We show that $f(n) \leq (5n + 5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.
Example: Pancake Problem

State space graph with costs as weights
function Tree-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Action: flip top
two
Cost: 2

Path to reach goal:
Flip four, flip three
Total cost: 7
All these search algorithms are the same except for fringe strategies.

- Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities).
- Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues.
- Can even code one implementation that takes a variable queuing object.
Up next: Informed Search

- Uninformed Search
 - DFS
 - BFS
 - UCS

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
 - Graph Search
Search Heuristics

- **A heuristic is:**
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - _Pathing?_
 - Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function

$$h(x)$$

Straight-line distance to Bucharest:
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Medias: 241
- Neamt: 234
- Oradea: 380
- Pitești: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Example: Heuristic Function

Heuristic?
E.g. the number of the largest pancake that is still out of place
Greedy Search
Greedy Search

- Expand the node that seems closest...

- Is it optimal?
 - No. Resulting path to Bucharest is not the shortest!
Greedy Search

- **Strategy**: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- **A common case**:
 - Best-first takes you straight to the (wrong) goal

- **Worst-case**: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]
Video of Demo Contours Greedy (Empty)
Video of Demo Contours Greedy (Pacman Small Maze)
A* Search
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* \(g(n) \)
- **Greedy** orders by goal proximity, or *forward cost* \(h(n) \)

- **A* Search** orders by the sum: \(f(n) = g(n) + h(n) \)

Example: Teg Grenager
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Admissible Heuristics
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.
A heuristic h is admissible (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Examples:

- Coming up with admissible heuristics is most of what’s involved in using A^* in practice.
Optimality of A* Tree Search
Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[
\begin{align*}
 f(n) &= g(n) + h(n) & \text{Definition of f-cost} \\
 f(n) &\leq g(A) & \text{Admissibility of h} \\
 g(A) &= f(A) & \text{h = 0 at a goal}
\end{align*}
\]
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

\[g(A) < g(B) \quad \text{B is suboptimal} \]
\[f(A) < f(B) \quad \text{h = 0 at a goal} \]
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)
 3. n expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

\[f(n) \leq f(A) < f(B) \]
Properties of A*

Uniform-Cost

A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]
Video of Demo Contours (Empty) -- UCS
Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – \(A^* \)
Video of Demo Contours (Pacman Small Maze) – A*
Comparison

Greedy

Uniform Cost

A*
A* Applications
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[Demo: UCS / A* pacman tiny maze (L3D6, L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]
Video of Demo Pacman (Tiny Maze) – UCS / A*
Video of Demo Empty Water Shallow/Deep – Guess Algorithm
Creating Heuristics
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Start State

Goal State

Admissible heuristics?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a relaxed-problem heuristic

Start State

Goal State

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Total *Manhattan* distance

- Why is it admissible?

- \(h(\text{start}) = 3 + 1 + 2 + ... = 18 \)

<table>
<thead>
<tr>
<th></th>
<th>TILES</th>
<th>MANHATTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>...4 steps</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>...8 steps</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>...12 steps</td>
<td>227</td>
<td>73</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
Semi-Lattice of Heuristics
Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if
 \[
 \forall n : h_a(n) \geq h_c(n)
 \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[
 h(n) = \max(h_a(n), h_b(n))
 \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- Idea: never expand a state twice

- How to implement:
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- Important: store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?
A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set: S B C A
Consistency of Heuristics

- **Main idea:** estimated heuristic costs \leq actual costs
 - **Admissibility:** heuristic cost \leq actual cost to goal
 $$h(A) \leq \text{actual cost from A to G}$$
 - **Consistency:** heuristic “arc” cost \leq actual cost for each arc
 $$h(A) - h(C) \leq \text{cost(A to C)}$$

- **Consequences of consistency:**
 - The f value along a path never decreases
 $$h(A) \leq \text{cost(A to C)} + h(C)$$
 - A^* graph search is optimal
Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - See slides, also video lecture from past years for details.
- With h=0, the same proofs shows that UCS is optimal.
Optimality of A* Graph Search
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal
Optimality

- **Tree search:**
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
Search Gone Wrong?
A*: Summary
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems
Tree Search Pseudo-Code

```plaintext
function Tree-Search(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← Remove-Front(fringe)
        if Goal-Test(problem, state[node]) then return node
        for child-node in Expand(state[node], problem) do
            fringe ← Insert(child-node, fringe)
        end
    end
end
```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← INSERT(child-node, fringe)
 end
 end
 end
Optimality of A* Graph Search

Consider what A* does:

- Expands nodes in increasing total f value (f-contours)
 Reminder: $f(n) = g(n) + h(n) = \text{cost to } n + \text{heuristic}$
- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?
Optimality of A* Graph Search

Proof:
- New possible problem: some \(n \) on path to \(G^* \) isn’t in queue when we need it, because some worse \(n' \) for the same state dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor of \(n \) that was on the queue when \(n' \) was popped
 - \(f(p) < f(n) \) because of consistency
 - \(f(n) < f(n') \) because \(n' \) is suboptimal
 - \(p \) would have been expanded before \(n' \)
- Contradiction!
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the $\log(n)$ overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models...
Search Gone Wrong?