Announcements

- HW1 due this Wednesday at midnight
- HW2 released this Wednesday at midnight
- Project 1 due next Monday at midnight
- Contest 1 released! See pinned Piazza post for details
- Note 1 is released and can be found on Piazza
CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructors: Anca Dragan, Sergey Levine
University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]
A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set: S B C A
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from } A \text{ to } G \]
 - Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]
- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal
Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - See slides from last time, also video lecture from past years for details.
- With $h=0$, the same proof shows that UCS is optimal.
Constraint Satisfaction Problems

N variables
domain D
constraints

states
partial assignment
goal test
complete; satisfies constraints
successor function
assign an unassigned variable
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - Implicit: WA \neq NT
 - Explicit: $(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}$
- Solutions are assignments satisfying all constraints, e.g.:
 $$\{WA=\text{red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}\}$$
Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: N-Queens

- **Formulation 1:**
 - **Variables:** X_{ij}
 - **Domains:** $\{0, 1\}$
 - **Constraints**

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

 \[\ldots\]
Screenshot of Demo N-Queens

Click on a variable to split its domain.
Click on a constraint to reorder its variables.
Click on an arc to make it arc-consistent.

5-QUEENS

A: (1 2 3 4 5)
B: (1 2 3 4 5)
C: (1 2 3 4 5)
D: (1 2 3 4 5)
E: (1 2 3 4 5)

Queens 1
Queens 2
Queens 2
Queens 3
Queens 4
Queens 1

ABCDE

1 2 3 4 5
Example: Cryptarithmetic

- Variables:
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints:
 \[\text{alldiff}(F, T, U, W, R, O) \]
 \[O + O = R + 10 \cdot X_1 \]
 \[\ldots \]
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,...,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Approach:
- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.
- An early example of an AI computation posed as a CSP.

Approach:
- Each intersection is a variable.
- Adjacent intersections impose constraints on each other.
- Solutions are physically realizable 3D interpretations.
Varieties of CSPs and Constraints
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalently reducing domains), e.g.:
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables, e.g.:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables, e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…
Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?

\[
\{\text{WA}=g\} \quad \{\text{WA}=r\} \quad \ldots \quad \{\text{NT}=g\} \quad \ldots
\]
Search Methods

- What would BFS do?

- What would DFS do?
 - let’s see!

- What problems does naïve search have?
Video of Demo Coloring -- DFS
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- **Idea 1: One variable at a time**
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- **Idea 2: Check constraints as you go**
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called backtracking search (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Example

[Demo: coloring -- backtracking]
Video of Demo Coloring – Backtracking
Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add \{var = value\} to assignment
result ← RECURSIVE-BACKTRACKING(assignment, csp)
if result ≠ failure then return result
remove \{var = value\} from assignment
return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?
Filtering

Keep track of domains for unassigned variables and cross off bad options
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]
Video of Demo Coloring – Backtracking with Forward Checking
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- *Constraint propagation*: reason from constraint to constraint
An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking? Enforcing consistency of arcs pointing to each new assignment
Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- … but detecting all possible future problems is NP-hard – why?
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]
Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph
Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph
K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute

- (You need to know the k=2 case: arc consistency)
Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent

- Claim: strong n-consistency means we can solve without backtracking!

- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ...

- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)