Recap: Defining MDPs

- Markov decision processes:
 - Set of states \(S \)
 - Start state \(s_0 \)
 - Set of actions \(A \)
 - Transitions \(P(s' \mid s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Racing Search Tree
Optimal Quantities

- **The value (utility) of a state** s:
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- **The value (utility) of a q-state** (s,a):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- **The optimal policy**:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

- Recursive definition of value:

\[
V^*(s) = \max_a Q^*(s, a)
\]

\[
Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]

\[
V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
\]
Key idea: time-limited values

Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

- Equivalently, it’s what a depth-k expectimax would give from s
$k = 0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=1$

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k = 2 \]

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k = 7 \]

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k = 9 \]

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=10$

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=11$

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 12$

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence

- Complexity of each iteration: $O(S^2A)$

- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \]

\[V_1 = \begin{bmatrix} 2 \\ \text{S: } .5*1 + .5*1 = 1 \\ \text{F: } -10 \end{bmatrix} \]

\[V_2 \]

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]

Assume no discount!
Example: Value Iteration

Initial Values:
- **V_0:**
 - 0 0 0 0
- **V_1:**
 - 2 1 0
- **V_2:**
 - S: 1+2=3
 - F: 0.5*(2+2) + 0.5*(2+1) = 3.5

Transition Equation:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Assume no discount!
Example: Value Iteration

\[V_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}, \quad V_1 = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}, \quad V_2 = \begin{bmatrix} 3.5 & 2.5 & 0 \end{bmatrix} \]

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
- That last layer is at best all R_{MAX}.
- It is at worst R_{MIN}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
- So as k increases, the values converge.
Policy Extraction
Let's imagine we have the optimal values $V^*(s)$.

How should we act?
- It's not obvious!
- We need to do a mini-expectimimax (one step)

$$
\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]
$$

This is called **policy extraction**, since it gets the policy implied by the values.
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

 \[\pi^*(s) = \arg\max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Let’s think.

- Take a minute, think about value iteration.
- Write down the biggest question you have about it.
Policy Methods
Problems with Value Iteration

- Value iteration repeats the Bellman updates:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
$k = 12$

VALUES AFTER 12 ITERATIONS

Gridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:
 - **Step 1: Policy evaluation:** calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - **Step 2: Policy improvement:** update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is **policy iteration**
 - It’s still optimal!
 - Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values

- If we fixed some policy \(\pi(s) \), then the tree would be simpler – only one action per state
 - ... though the tree’s value would depend on which policy we fixed
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:
 \[V^\pi(s) = \text{expected total discounted rewards starting in } s \text{ and following } \pi \]

- Recursive relation (one-step look-ahead / Bellman equation):
 \[V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
How do we calculate the V’s for a fixed policy π?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

Efficiency: $O(S^2)$ per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with Matlab (or your favorite linear system solver)
Policy Iteration
Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement:** For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Algorithms

- So you want to….
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal
Next Time: Reinforcement Learning!
Asynchronous Value Iteration*

- In value iteration, we update every state in each iteration.
- Actually, any sequences of Bellman updates will converge if every state is visited infinitely often.
- In fact, we can update the policy as seldom or often as we like, and we will still converge.
- Idea: Update states whose value we expect to change: If $|V_{i+1}(s) - V_i(s)|$ is large then update predecessors of s.