AI (in the news)

Click here.
Constraint Satisfaction Problems II
Instructors: Dan Klein and Pieter Abbeel
University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel.]
Today

Efficient Solution of CSPs
Local Search
Reminder: CSPs

CSPs:
+ Variables
+ Domains
+ Constraints
+ Implicit (provide code to compute)
+ Explicit (provide a list of the legal tuples)
+ Unary / Binary / N-ary

Goals:
+ Here: find any solution
+ Also: find all, find best, etc.
Backtracking Search

function Backtracking-Search(*csp*) **returns** solution/failure

return Recursive-Backtracking({}, *csp*)

function Recursive-Backtracking(*assignment, csp*) **returns** soln/failure

if assignment is complete **then** **return** assignment

var ← Select-Unassigned-Variable(VARIABLES[*csp*], assignment, *csp*)

for each value in Order-Domain-Values(*var, assignment, csp*) **do**

if value is consistent with assignment given CONSTRAINTS[*csp*] **then**

add \{ var = value \} to assignment

result ← Recursive-Backtracking(*assignment, csp*)

if result ≠ failure **then** **return** result

remove \{ var = value \} from assignment

return failure
Improving Backtracking

General-purpose ideas give huge gains in speed
+ ... but it’s all still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
 + Which variable should be assigned next? (MRV)
 + In what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?
Arc Consistency and Beyond
Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are simultaneously consistent:

Arc consistency detects failure earlier than forward checking

Important: If X loses a value, neighbors of X need to be rechecked!

Must rerun after each assignment!

Remember: Delete from the tail!

Can also eliminate Blue from NT and SA!
Can backtrack immediately.
Arc Consistency: Step by step.
Limitations of Arc Consistency

After enforcing arc consistency:
+ Can have one solution left
+ Can have multiple solutions left
+ Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!

What went wrong here?
K-Consistency
K-Consistency

Increasing degrees of consistency
 + 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 + 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 + K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)
Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
+ Choose any assignment to any variable
+ Choose a new variable
+ By 2-consistency, there is a choice consistent with the first
+ Choose a new variable
+ By 3-consistency, there is a choice consistent with the first 2
+ ...

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Structure
Problem Structure

Extreme case: independent subproblems
 + Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:
 + Worst-case solution cost is $O\left(\frac{n}{c}d^c\right)$, linear in n
 + E.g., $n = 80$, $d = 2$, $c = 20$
 + $280 = 4$ billion years at 10 million nodes/sec
 + $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Tree-Structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in $O(nd^2)$ time

+ Compare to general CSPs, where worst-case time is $O(d^n)$.

This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning.
Algorithm for tree-structured CSPs:
+ Order: Choose root variable and order variables so that parent precedes children
+ Remove backward:
 For $i = n : 2$, apply RemoveInconsistent(Parent(X_i),X_i)
+ Assign forward:
 For $i = 1 : n$, assign X_i consistently with Parent(X_i)

Runtime: $O(nd^2)$ (why?)
Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each $X \leftarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets
Improving Structure
Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains
Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
Cutset size c gives runtime $O((d^c)(n - c)d^2)$, very fast for small c
Cutset Conditioning

Choose a cutset.

Instantiate the cutset (all possible ways).

Compute residual CSP for each assignment.

Solve the residual CSPs (tree structured).
Find the smallest cutset for the graph below.
Tree Decomposition*

Idea: create a tree-structured graph of mega-variables

Each mega-variable encodes part of the original CSP

Subproblems overlap to ensure consistent solutions

\{(WA = r, NT = g, SA = b), \ldots\}

\{(NT = r, SA = g, Q = b), \ldots\}

Agree:

\((M1, M2) \in \{((WA = r, SA = g, NT = b), (SA = g, NT = b, Q = r)), \ldots\}\)
Iterative Improvement
Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned

To apply to CSPs:
+ Take an assignment with unsatisfied constraints
+ Operators reassign variable values

+ No fringe! Live on the edge.

Algorithm: While not solved,
+ Variable selection: randomly select any conflicted variable
+ Value selection: min-conflicts heuristic:
 + Choose a value that violates the fewest constraints
 + I.e., hill climb with \(h(n) = \) total number of violated constraints
Example: 4-Queens

States: 4 queens in 4 columns \((4^4 = 256\) states\)
Operators: move queen in column
Goal test: no attacks
Evaluation: \(c(n) = \) number of attacks

Demo: n-queens – iterative improvement (L5D1) Demo: coloring – iterative improvement
Video of Demo Iterative Improvement – n Queens
Video of Demo Iterative Improvement – Coloring
Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)!

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio R

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$
CSPs are a special kind of search problem:
 + States are partial assignments
 + Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
 + Ordering
 + Filtering
 + Structure

Iterative min-conflicts is often effective in practice
Local Search
Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)

Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes.

Generally much faster and more memory efficient (but incomplete and suboptimal)
Hill Climbing

Simple, general idea:
+ Start wherever
+ Repeat: move to the best neighboring state
+ If no neighbors better than current, quit

What’s bad about this approach?
+ Complete?
+ Optimal?

What’s good about it?
Hill Climbing Diagram

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Hill Climbing Quiz

Starting from X, where do you end up?
Starting from Y, where do you end up?
Starting from Z, where do you end up?
Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
 schedule, a mapping from time to “temperature”
local variables: current, a node
 next, a node
 T, a “temperature” controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
 T ← schedule[t]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← VALUE[next] − VALUE[current]
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE/T}$

Idea: Escape local maxima by allowing downhill moves
+ But make them rarer as time goes on
Simulated Annealing

Theoretical guarantee:
- Stationary distribution: \(p(x) \propto e^{E(x)/kT} \)
- If \(T \) decreased slowly enough,
 - will converge to optimal state!

Is this an interesting guarantee?

Sounds like magic, but reality is reality:
- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
- People think hard about ridge operators which let you jump around the space in better ways
Genetic algorithms use a natural selection metaphor

- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety

Possibly the most misunderstood, misapplied (and even maligned) technique around
Example: N-Queens

Why does crossover make sense here?
When wouldn’t it make sense?
What would mutation be?
What would a good fitness function be?
Example: Fault Diagnosis

Fault networks:
+ Variables?
+ Domains?
+ Constraints?

Various ways to query, given symptoms
+ Some cause (abduction)
+ Simplest cause
+ All possible causes
+ What test is most useful?
+ Prediction: cause to effect

We’ll see this idea again with Bayes’ nets.
Beam Search

Like greedy hillclimbing search, but keep K states at all times:

Variables: beam size, encourage diversity?
The best choice in MANY practical settings
Complete? Optimal?
Why do we still need optimal methods?
Greedy Search
Beam Search
Next Time: Adversarial Search!