1 Neural Network Representations

You are given a number of functions which are graphed below, from a to h. For the Neural networks indicated on the following pages, indicate which of these functions they can represent.

(a) $2x$

(b) $4x - 5$

(c) $\begin{cases} 2x - 5 & x \geq 2.5 \\ 0 & x < 2.5 \end{cases}$

(d) $\begin{cases} -2x - 5 & x \leq -2.5 \\ 0 & x > -2.5 \end{cases}$

(e) $\begin{cases} -x + 3 & x \geq 2 \\ 1 & x < 2 \end{cases}$

(f) $\begin{cases} 3 & x \leq 0 \\ 3 - x & 0 < x \leq 3 \\ 0 & x > 3 \end{cases}$

(g) $\log(x)$

(h) $\begin{cases} -1.5x & x \leq 0 \\ 0 & 0 < x \leq 3 \\ 3x - 9 & x > 3 \end{cases}$
1. Consider this neural network, with input being a real number x, weight w and output o, such that $o = wx$.
Which of the functions can be represented by this neural network where For the options which can, write out the appropriate value of w.

\[
f(x,w) = wx
\]

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h

2. Now we introduce a bias term b into the same neural network, such that $o = wx + b$. Which of the functions can be represented by this network? For the options which can, write out an appropriate value of w, b

\[
f(x,w,b) = wx + b
\]

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h
3. We can introduce a non linearity into this neural network as indicated below. We use the ReLu nonlinearity, which has the form ReLu(x) = max(0, x). Now which of the functions can be represented by this neural network with weight w and bias b? For the options which can, write out an appropriate value of w, b.

\[
\text{ReLu}(x) = \max(0, x)
\]

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h

4. Now we consider neural networks with a hidden layer as indicated below. We now have input still a real number x, but two sets of weights and biases \(w_1, b_1\) and \(w_2, b_2\). We define the hidden unit h such that \(h = w_1 x + b_1\), and \(o = w_2 h + b_2\). Which of the functions can be represented by this network? For the options which can, write out an appropriate value of \(w_1, w_2, b_1, b_2\).

\[
f(x, w, b) = wx + b
\]

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h

3
5. Next we consider adding ReLu non-linearities to the network above as indicated below. Which of the functions can be represented by this network? For the options which can, write out an appropriate value of w_1, w_2, b_1, b_2

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h

6. Next we consider adding another hidden layer to the network along with a ReLu non-linearity as indicated below. Which of the functions can be represented by this network?

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h
7. We next consider a neural network as shown below with two units in the hidden layer. Which of the functions can be represented by this network?

(i) \(a \)
(ii) \(b \)
(iii) \(c \)
(iv) \(d \)
(v) \(e \)
(vi) \(f \)
(vii) \(g \)
(viii) \(h \)
Next we consider adding ReLu non-linearities to this network as indicated below. Which of the functions can be represented by this network?

(i) a
(ii) b
(iii) c
(iv) d
(v) e
(vi) f
(vii) g
(viii) h