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Genetic information typically remains constant in all cells

throughout the life cycle of most organisms. However, there are

exceptions where DNA elimination is an integral,

developmental program for some organisms, associated with

generating distinct germline versus somatic genomes.

Programmed DNA elimination occurs in unicellular ciliates and

diverse metazoa ranging from nematodes to vertebrates. DNA

elimination can occur through chromosome breakage and

selective loss of chromosome regions or the elimination of

individual chromosomes. Recent studies provide compelling

evidence that DNA elimination is a novel form of gene silencing,

dosage compensation, and sex determination. Further

identification of the eliminated sequences, genome changes,

and in depth characterization of this phenomenon in diverse

metazoans is needed to shed new light on the functions and

mechanisms of this regulated process.
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Introduction
In multicellular organisms, germ cells maintain the genetic

information and ensure its integrity for the next generation,

while somatic cells undergo differentiation and specializ-

ation. The genetic makeup of the germline and somatic

cells is typically the same throughout the organism’s life

cycle. However, there are exceptions to the general gen-

ome constancy observed in most organisms. During the

development of some organisms, major genome changes

can occur in various cell types [1,2]. One well-known

example is the recombination events in the vertebrate

immune system that generates diversity in antibodies

and receptors in B and T cells, respectively [3]. Another

major developmental genome change is programmed DNA

elimination where specific DNA sequences, up to �90% of

the genome in some cases, are eliminated from somatic

lineages. Since its discovery in 1887 [4��], programmed
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DNA elimination in animals has been the subject of

much interest and speculation [5–7]. The best-studied

examples of programmed DNA elimination in eukar-

yotes are those present in the single-cell ciliates (see

recent reviews [8–10]). Recently, high-throughput se-

quencing has been used in multicellular organisms to

comprehensively examine genome changes that occur

during programmed DNA elimination. Here, we review

the broad range of organisms that demonstrate this

phenomenon, and what is known regarding the func-

tion(s) and molecular mechanism(s) of programmed

DNA elimination in metazoa.

Distribution and identification of programmed
DNA elimination
Programmed DNA elimination has been described in

single-cell ciliates and a diversity of multicellular animals

including more than 100 species from nine major taxo-

nomic groups (Figure 1 and Table 1). In most cases,

programmed DNA elimination is associated with either

differentiation of somatic cells or sex determination [1,6].

Two types of programmed DNA elimination, chromatin

diminution and chromosome elimination, have been

described (see Table 1). In chromatin diminution,

chromosomes break and regions of the chromosomes

are lost. Diminution occurs in ciliates and some parasitic

nematodes, copepods, spotted ratfish, hagfish, and

lampreys. In chromosome elimination, entire chromo-

somes are lost. This elimination occurs in some nema-

todes, insects, mites, finches, and bandicoots, as well as in

some hagfish [11]. Given its wide phylogenetic distri-

bution, programmed DNA elimination likely has arisen

independently in these different lineages [6]. Outstand-

ing questions remain including what the selective pres-

sure for this process is, whether this pressure is the same

in different organisms, and whether elimination serves

the same function in diverse organisms?

Programmed DNA elimination typically has been ident-

ified through careful cytological studies of chromosome

behavior during development. Theodor Boveri first dis-

covered the diminution process by studying the chromo-

some segregation behavior in the horse parasitic

nematode, Parascaris univalens [4��]. Boveri’s analysis

contributed to the establishment of chromosome theory

of heredity and the first nematode cell lineages [12,13].

The single, large germline chromosome pair, a large

increase in somatic chromosome number, and elimination

of over 85% of the germline genome in somatic cells

enabled Boveri to readily observe and describe chromatin

diminution (Figure 2). Soon thereafter, DNA elimination

was described in several other nematodes including the
www.sciencedirect.com
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Figure 1

Choanoflagellates

Sponges

Comb jellies

Jellyfishes

Crocodilians

Turtles

Lizards

Amphibians

Lungfishes
Ray finned fishes

Lancelets
Starfishes

Sea squirts

Lamp shells

Mollusks

Segmented worms

Ribbon worms

Bryozoans

Onychophorans

Arrow worms

Tardigrades

Millipedes

Rotifers
Flatworms

Lobe finned fishes

Birds

Crustaceans

Arachnids

Insects

Roundworms

1914

1939

1887

1998

1965

1984

1986 2009

1965

1959

Ciliates

Mammals

Chondrichthyans

Hagfishes Lampreys

Current Opinion in Genetics & Development

Programmed DNA elimination in multicellular organisms. Organisms known to undergo DNA elimination are illustrated on a phylogenetic tree. The tree

was constructed from 18S ribosomal RNA sequences using MEGA (v5.22) [55]. Common names are used for the groups. The tree is rooted on ciliates.

Photo credits: Antonio Guillen from Water Project, Spain (ciliate S. mytilus), Colin Johnstone (nematode P. univalens), Entomart (moth P. fuliginosa),

Wiley Library (mite M. occidentalis), James Haney (copepod M. edax), Jeremiah Smith (Sea lamprey P. marinus), Kinya G. Ota and Shigeru Kuratani

(hagfish E. burgeri), wikipedia.org (Spotted ratfish H. colliei and Zebra finch T. guttata), and Joseph McKenna (bandicoot I. macrourus). The year that

DNA elimination was discovered in each group of organisms is noted.
related nematode Ascaris suum in 1895 (see Figure 2), and

then in insects and other organisms (Figure 1 and Table 1,

see review [6]). In the most recent discovery of chromatin

diminution, Smith et al. followed a repetitive germline-

specific DNA marker, germ1, in the germline and somatic
www.sciencedirect.com 
tissue of lamprey to find that germ1 is eliminated in

somatic tissues [14��].

The historical identification of DNA elimination using

cytological methods has been serendipitous, and only
Current Opinion in Genetics & Development 2014, 27:26–34
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Table 1

Organisms with programmed DNA elimination.

Organism First discovered

(year; organism)

Common name Other representative

organisms

Known speciesa D/Ec References

Nematodes 1887; Parascaris univalens Roundworm Ascaris suum; Strongyloides papillosus 11 D/E [4��,35]

Insects 1914; Phragmatobia fuliginosa Moth Sciara ocellaris; S. coprophila 65 E [27,56]

Arachnids 1939; Pediculopis graminum Grass mite Metaseiulus occidentalis 2 E [57,58]

Crustaceans 1959; Cyclops strenuus Copepod Cyclops kolensis; Mesocyclops

edax

17 D [59,60]

Ciliates 1965; Stylonychia mytilus Ciliate Tetrahymena thermophila;

Oxytricha trifallax; Paramecium

tetraurelia

4500b D [8,61]

Mammals 1965; Isoodon macrourus Bandicoot Perameles nasuta 10 E [62�,63]

Chondrichthyans 1984; Hydrolagus colliei Spotted ratfish Chimaera monstrosa 4 D [64]

Hagfishes 1986; Eptatretus burgeri Inshore hagfish Myxine glutinosa 10 D/E [11,65�]

Birds 1998; Taeniopygia guttata Zebra finch Lonchura domestica 2 E [36�,46]

Lampreys 2009; Petromyzon marinus Sea lamprey – 1 D [14��]

a Minimum number of known species.
b All ciliates exhibit nuclear dimorphism and diminution is thought to occur in all of them.
c D, chromatin diminution; E, chromosome elimination.
large-scale genome changes are likely to be discovered by

these approaches. The current broad use of high-through-

put sequencing in diverse organisms, such as the Genome

10K Project [15], and single-cell sequencing may lead to

the identification of additional examples of DNA elim-

ination. These studies will likely contribute to our un-

derstanding of the breadth and frequency of DNA

elimination in different metazoa, as well as whether

genome differences might be present within different

cells in mammals.

Identification of eliminated sequences
provides insights into the function of DNA
elimination
A key to understanding DNA elimination is defining the

organization of chromosomes and their eliminated

sequences. Early studies using DNA reassociation

kinetics demonstrated that significant amounts of repeti-

tive DNA were eliminated from the parasitic nematode A.
suum; subsequent studies demonstrated that the major

eliminated repeat was a 121 bp tandemly repeated satel-

lite [16�]. Later, seminal studies demonstrated that some

transposon elements [17�] and three single-copy genes

were eliminated in A. suum [18��,19��,20,21]. Further-

more, by comparing the genomic sequences around chro-

mosomal breakage regions, Muller et al. demonstrated

that new telomeres were added at the DNA breaks and

several break sites were conserved between the nema-

todes P. univalens and A. suum [22��,23].

More recently, a comprehensive genomic approach was

used to compare the genome differences between the

germline (spermatids) and somatic cells (intestine) of a

single male A. suum [24��]. Wang et al. sequenced, de

novo assembled, and compared the germline and somatic

genomes from a male A. suum and found that �43 Mb
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(�13%) of DNA was eliminated from the intestinal

genome. Seventy percent of the eliminated DNA was

repetitive sequences consisting predominantly of the

previously described 121 bp tandem repeat. Surprisingly,

the other eliminated sequences (�12.7 Mb) were single-

copy sequences corresponding to �700 protein-coding

genes that are exclusively expressed in the germline and

early embryos. A major group of the eliminated genes

is associated with translation, demonstrating that the

translation machinery may be very different between

the germline and soma, supporting and extending earlier

observations made by Muller et al. [18��,19��]. Notably,

�50 eliminated genes are orthologs to well-characterized

genes in Caenorhabditis elegans whose loss is associated

with clear phenotypes in germline formation, gametogen-

esis, and early embryogenesis. This large-scale elimin-

ation of germline genes suggests that DNA elimination

may be an extreme and permanent mechanism for germ-

line gene regulation in A. suum, deleting rather than

repressing their expression in somatic cells. Wang et al.

also identified �50 breakpoints where chromosome

regions were lost and telomere addition occurred on

the retained chromosomes in the somatic cells, but no

DNA fusions or rearrangements were observed. This

genomic study significantly extends our understanding

of the eliminated sequences and DNA breakpoints in

A. suum, however, the current genome assemblies do not

enable large-scale characterization of changes at the

chromosomal level. Improved genome assemblies and

additional studies are now needed to provide an overall

view of the organization of the chromosomes and

their alterations during diminution. High-throughput

sequencing of chromatin diminution in the related nema-

tode P. univalens demonstrated that many of the break

sites are conserved between the two nematodes as pre-

viously suggested [23], and also indicates that the genes
www.sciencedirect.com
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Figure 2
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Chromatin diminution in Parascaris and Ascaris. (a,b). P. univalens embryos. (a) 1-Cell embryo showing the single pair of germline chromosomes.

(b) 4-Cell embryo with two cells (outlined in red) undergoing diminution. The retained portions of the germline chromosomes are fragmented into many

smaller chromosomes (small arrows). The heterochromatic arms that will be eliminated (big arrows) remain visible. (c,d) A. suum embryos. (c) 4-Cell

embryo with two cells undergoing chromatin diminution. (d) 6-Cell embryo with one cell undergoing chromatin diminution. Note that DNA to be

eliminated is present as fragments (artificially colored red) between chromosomes segregating in early anaphase (c); DNA fragments (red) derived from

a previous cell diminution can be seen in the cytoplasm of cells to the right (d).
eliminated are similar to those observed in A. suum (Wang

J, and Davis RE, unpublished data). This further supports

the idea that diminution is a highly regulated and con-

served process in these related parasitic nematodes.

Recent studies identified chromatin diminution in the sea

lamprey and also demonstrated the elimination of both

repetitive and single-copy sequences. Smith et al. used

flow cytometry to measure the DNA content in lamprey

testes and blood and found that �20% (�500 Mb) of the

lamprey germline genome is eliminated in somatic cells

[14��]. Further comparisons between sperm and liver DNA

using array comparative genomic hybridization and gen-

ome survey sequences indicated that the eliminated DNA

consists not only of repetitive sequences, but strikingly,

also a few thousand genes [25��]. The eliminated genes

include homologs of vertebrate genes that function in

either the development or maintenance of the germline.
www.sciencedirect.com 
Given that a large number of germline-associated genes are

eliminated in these divergent organisms, nematodes and

lampreys, this suggests a possible common function of

chromatin diminution. It will be interesting to see if loss

of single-copy germline-associated genes is a common

feature within other metazoa that undergo diminution such

as copepods, where ribosomal RNA gene copy number is

regulated by diminution [26].

Although DNA elimination events are often associated

with germ-soma differentiation, others are associated with

sex determination. In sciarid flies, the elimination of one

or two paternal X chromosomes in the pre-somatic cells

determines the sex of the embryo (see reviews [27,28]). In

a recent study on chromatin diminution in the parasitic

nematode of sheep, Strongyloides papillosus [29��],
Nemetschke et al. used genetic crosses to determine that

one of the two copies of a whole section of a chromosome
Current Opinion in Genetics & Development 2014, 27:26–34
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Table 2

DNA elimination removes primarily repetitive sequences.

Organism % Genome

eliminated

% Repeat in

eliminated sequence

Eliminated repetitive

sequence

References

Nematode

Ascaris suum 13 70 121 bp tandem repeats [16,24��]

Parascaris univalens 88 98 5-bp and 10-bp tandem repeats [66�,67]

Lamprey and hagfish

Petromyzon marinus 20 �35% are Germ1 Germ1 (200 bp tandem repeats) and others. [14��,25��,68]

Eptatretus cirrhatus 35 Majoritya 4 tandem repeats, from 54 to 172 bp [69]

Copepod

Cyclops kolensis 94 Majoritya Tandem repeat with 10–30 bp motifs [70]

Mesocyclops edax 90 Majoritya 2-bp, 8-bp, or 9-bp tandem repeats

and other repetitive sequences

[32�,71,72]

a All known eliminated sequences are repetitive.
undergoes DNA elimination by chromatin diminution.

The region eliminated corresponds to a sex chromosome

that is entirely eliminated in the closely related parasitic

nematode of rats, Strongyloides ratti. This demonstrated

that diminution provides a means to restore the sex

chromosome ratio in males, and thus functions in the

sex-determination system in this organism. Additional

analyses suggest that chromatin diminution in S. papillo-
sus is a derived state in Strongyloides species, evolved as a

consequence of an X chromosome and autosome fusion

that requires chromatin diminution to generate S. papil-
losus males [30].

A common theme in organisms that exhibit DNA elim-

ination is the elimination of large amounts of repetitive

sequences (see Table 2). In chromatin diminution, the

eliminated repeats are typically tandem repeats that vary

from 2 to 172 bp. Recent observations in zebra finch show

that repetitive sequences are eliminated during chromo-

some elimination [31]. The conserved elimination of

repetitive sequences in somatic cells raises the key ques-

tion: why is it that the eliminated sequences are primarily

repetitive? Clearly, repetitive sequences play key roles in

genome evolution, recombination, and meiosis. They

may also play additional roles in germline development

and maintenance. A recent study in copepods suggests

that chromatin diminution in somatic cells may be necess-

ary to reduce the ongoing repeat expansion and load in

the germline [32�]. A difficult but important goal will be

to determine the location and organization of the repeats

on chromosomes undergoing diminution. Such studies

might provide important insights into the function of

simple repeats in the germline, as well as perhaps their

potential role in contributing to the process of diminution.

A variety of theories/hypotheses have been proposed to

explain the biological significance of programmed DNA

elimination [1,6,7,27,33–35] including mechanisms for (1)

gene silencing, (2) dosage compensation, (3) sex determi-

nation, (4) position-effects for gene expression, (5) germ-

line development and meiosis, and (6) germline and soma
Current Opinion in Genetics & Development 2014, 27:26–34 
differentiation. The recent studies on Ascaris and the

lamprey, where significant numbers of germline and early

embryonic genes are eliminated and thus silenced in the

somatic cells, provides strong support for a role in gene

silencing. Recent studies also suggest it is a mechanism for

dosage compensation in Ascaris, where many eliminated

genes have undergone duplication, and sex determination

in S. papillosus [29��], flies [27], and birds [36�]. The

association of DNA elimination with germ-soma differen-

tiation also poses the interesting question of whether

somatic DNA elimination contributes to the differen-

tiation of specific cell lineages. Wang et al. [24��] compared

DNA elimination in different cell lineages in A. suum, that

exhibit deterministic cleavage similar to that observed in

C. elegans, and found that the overall genomic content and

the breakpoints are the same in all five precursor somatic

cells undergoing diminution. In the sea lamprey, flow

cytometry data indicate there might be subtle variation

in the somatic genome size in different cells, although all

markers assayed thus far exhibit uniform loss across differ-

ent somatic tissues [14��,25��]. Thus, while current data

suggest that the sequences lost from diminution are overall

the same in all cells, it remains to be determined whether

variations in diminution or the resulting chromosomal

position effects might have functional significance that

contributes to the differentiation of various cell lineages.

Molecular mechanisms of DNA elimination
Early mechanistic studies in Parascaris and Ascaris focused

on the role of cytoplasmic determinants and the germ

plasm in diminution (see reviews [1,5,6]). Using a variety

of methods including doubly fertilized eggs, centrifu-

gation, ultraviolet irradiation, and chemical induction

[37], these studies suggested that cytoplasmic factors play

a key role in chromatin diminution and may be segregated

between the germline and soma. No specific factors have

yet been identified that contribute to metazoan chromatin

diminution [38–40]. Studies in ciliates have shown that

small RNAs (piRNAs) and domesticated transposons are

involved in programmed DNA rearrangement and elim-

ination [10]. The piRNAs target sequences for retention or
www.sciencedirect.com
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Box 1 Outstanding questions in programmed DNA elimination

� Does chromatin diminution serve the same function in diverse

organisms?

� How are the sites for DNA breaks in chromatin diminution

identified, made, and processed? Is this process the same in the

divergent organisms that undergo diminution?

� What are the molecular mechanisms that alter normal chromo-

some segregation leading to the elimination of portions of

chromosomes or whole chromosomes?

� Does retained versus eliminated DNA undergo specific chromatin

and chromosomal organization changes that contribute to DNA

retention or elimination?

� Why are the majority of the sequences eliminated in chromatin

diminution repetitive? What is the function of eliminating germline

repetitive sequences in somatic cells? Do repetitive sequences

contribute to the elimination process?

� Does chromatin diminution contribute to cell lineage determination

or differentiation?

� Do small RNAs play a role in programmed DNA elimination as

observed in ciliates?

� Does programmed DNA elimination contribute to some genomic

mosaicism in vertebrates?

� Are processes associated with DNA elimination involved in

pathological conditions such as cancer, disease, or other devel-

opmental abnormalities?
elimination in different types of ciliates [8,41] whereas the

transposons lead to DNA breaks [42]. A recent study used

high-throughput sequencing to examine total small RNA

profiles during A. suum diminution; however, no correlation

between small RNAs and diminution was observed

[24��,43]. Additional studies are required to determine

whether specific Argonaute proteins and small RNAs con-

tribute to DNA elimination in metazoa.

How cells define the breakpoints and what cellular

machinery acts on them is likely to provide important

insights into the mechanism of chromatin diminution.

The sites for chromosomal breakage are conserved in

each generation in parasitic nematodes and the sea lam-

prey. In the sea lamprey, distinct short palindromic

sequences at three independent breakpoint regions were

observed, suggesting that site-specific recombination

might facilitate DNA elimination [25��]. Analysis of

the 50 breakpoints identified in Ascaris demonstrated

high fidelity of the break sites at the chromosomal level.

However, the break sites can be heterogeneous (ranging

over 200–2000 bp at a site) [22��,24��], and no conserved

sequence motifs or other characteristics were identified

5 kb on either side of the DNA breakpoint regions [24��].
It also remains to be determined whether DNA destined

for elimination or retention in Ascaris and lampreys under-

goes large-scale chromatin reorganization that could be

involved in the mechanisms of diminution. In the sea

lamprey, recent observations identified extra-nuclear

aggregations of repressive chromatin (Herdy, J.R. III

and Smith, J.J., personal communication), similar to those

observed during elimination in ciliates and finch [44–46],

suggesting an interrelationship between epigenetic silen-

cing and loss. Studies on chromosome elimination in

insects and finches indicate that a number of epigenetic

modifications are associated with elimination of chromo-

somes including changes in histone H3/H4 acetylation,

H3S10 phosphorylation, and DNA methylation ([44,46–
48,49�,50] and see recent review [28]).

A key question in DNA elimination is how chromosomes

or portions of chromosomes are selectively lost and thus

not segregated during cell division (Figure 2). Loss or

alterations in centromeres, kinetochore assembly, micro-

tubule attachment, or chromosome segregation could lead

to DNA elimination. Studies on chromosome elimination

in insects suggest that chromosome loss is most likely a

function of a segregation defect in the metaphase/anaphase

transition [48,51]. In sciarid flies, reduction in the depho-

sphorylation of H3S10P is associated with a failure or

retardation in sister chromatid separation [48]. In contrast,

chromosome elimination in finches may be associated with

a defect in kinetochore–microtubule interactions [47]. In

chromatin diminution, once DNA breaks occur in mono-

centric chromosomes, regions that retain the centromeres

would likely be properly segregated, whereas those regions

that lack them would not and thus be eliminated. Genomic
www.sciencedirect.com 
regions without centromeres could also fuse with other

chromosome regions that retain their centromeres and thus

be faithfully segregated as observed in copepods [52].

Nematodes such as Ascaris and Parascaris have holocentric

chromosomes; kinetochore activity and microtubule

attachment sites extend along the length of holocentric

chromosomes. The location of centromeres is typically

constant on most chromosomes. However, recent data in

C. elegans suggest that centromere deposition can be

dynamic [53]. In addition, unpublished studies in Ascaris
indicate that the centromeric histone H3 variant Cenp-A

marks chromosomes that will be retained, but is greatly

reduced or absent on chromosomes that will be lost in

diminution mitoses (Wang, J. and Davis, R.E., unpub-

lished data). This is consistent with data from Parascaris
that a kinetochore plate is absent in chromosome regions

that will be lost [54�] and suggests that centromere depo-

sition may play an important role in determining chromo-

somal regions that will be retained or lost.

Perspective
Programmed DNA elimination occurs in ciliates and

diverse multicellular organisms. Recently, chromatin

diminution was described in the sea lamprey, a jawless

vertebrate, extending the distribution of diminution into

vertebrate lineages. New findings indicate that in addition

to the loss of repetitive sequences, many protein-coding

genes are lost in chromatin diminution, suggesting that

diminution serves as a mechanism for gene regulation and

silencing. Programmed DNA elimination is a complex

biological process that requires the identification of

sequences to be eliminated and a mechanism for their

elimination. Additional studies are needed to define the
Current Opinion in Genetics & Development 2014, 27:26–34
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mechanism(s) for selective loss of chromosomes or chromo-

some regions, breakage of chromosomes, and chromatin

organizational changes associated with DNA elimination

(Box 1). Analysis of DNA elimination in different systems

is likely to give new insight into the permanent gene

silencing, the genome dynamics, the evolution of genomes,

the role of repetitive sequences, and perhaps also infor-

mation on genome alterations in cancer and other diseases.

Note added in proof
During the production of this manuscript, a review on

chromatin diminution in copepods [73] and a perspective

on the role of methylcytosine in ciliate DNA elimination

[74] were published.
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