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SUMMARY

Chromatin diminution is the programmed elimination
of specific DNA sequences during development.
It occurs in diverse species, but the function(s) of
diminution and the specificity of sequence loss
remain largely unknown. Diminution in the nematode
Ascaris suum occurs during early embryonic cleav-
ages and leads to the loss of germline genome
sequences and the formation of a distinct genome
in somatic cells. We found that �43 Mb (�13%) of
genome sequence is eliminated in A. suum somatic
cells, including �12.7 Mb of unique sequence. The
eliminated sequences and location of the DNA
breaks are the same in all somatic lineages from
a single individual and between different individuals.
At least 685 genes are eliminated. These genes
are preferentially expressed in the germline and
during early embryogenesis. We propose that
diminution is a mechanism of germline gene regula-
tion that specifically removes a large number of
genes involved in gametogenesis and early embryo-
genesis.

INTRODUCTION

Metazoans must both ensure the stability of their genomes and

also carefully regulate the expression of germline genes in

somatic tissues. Failure of either of these processes has severe

consequences. However, there are examples of programmed

genome instability that are integral to the biology of an organism.

Well-known examples include vertebrate immunoglobulin gene

rearrangement that enables antibody diversification (Jung

et al., 2006) and the extensive remodeling of the somatic genome

that occurs during development of the macronucleus in ciliates

(Chalker and Yao, 2011). Chromatin diminution is another form

of genome rearrangement with DNA loss that occurs during

the development of diverse Metazoa, including some nema-

todes, copepod crustaceans, insects, lampreys/hagfish, and

zebra finches (Bachmann-Waldmann et al., 2004; Goday and
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Esteban, 2001; Goday and Pimpinelli, 1993; Kloc and Zagrodzin-

ska, 2001; Müller et al., 1996; Müller and Tobler, 2000; Nem-

etschke et al., 2010; Smith et al., 2009; Tobler et al., 1985,

1992; Zufall et al., 2005). DNA elimination occurs either during

gametogenesis or during differentiation of the somatic lineage

early in embryonic development. In some species, DNA elimina-

tion may be involved in sex determination (Goday and Esteban,

2001; Goday and Pigozzi, 2010; Nemetschke et al., 2010), but

in most organisms that undergo programmed chromatin diminu-

tion, the sequences lost and the role(s) of diminution remain

unknown.

Chromatin diminution was first described in an ascaridid

nematode by Theodor Boveri in 1887 (Boveri, 1887). Diminution

in nematodes is restricted to a number of parasitic nematodes

primarily in the Ascarididae (Goday and Pimpinelli, 1993; Müller

et al., 1996; Müller and Tobler, 2000; Pimpinelli and Goday,

1989) and does not occur in Caenorhabditis elegans (Emmons

et al., 1979). In the pig parasite A. suum, diminution occurs

during the third through fifth cleavages (4 to 16 cell stage) of

development in five distinct somatic precursor cells that give

rise to different cell lineages (Figure 1). This raises the following

key questions. (1) Are the sequences lost and the changes that

occur during diminution the same in all five of these precursor

cells? and (2) What are the sequences that are lost and their

functional significance?

During the Ascaris diminution process, chromosomes are

broken and the fragments to be eliminated remain at the meta-

phase plate, while the retained DNA is segregated into daughter

cells. It has been estimated that 25% of the A. suum genome is

lost in somatic cells, whereas the germline genome remains

intact (Müller et al., 1996; Müller and Tobler, 2000; Tobler

et al., 1985, 1992). The eliminated DNA includes highly repetitive

satellite sequences consisting primarily of a 121 bp tandem

repeat that is located in heterochromatin-like blocks at internal

sites and chromosome ends (Müller et al., 1982; Niedermaier

and Moritz, 2000; Streeck et al., 1982). Both internal regions

and terminal heterochromatic regions are eliminated, with addi-

tion of new telomeres resulting in an �50% increase in chromo-

some number (Bachmann-Waldmann et al., 2004; Huang et al.,

1996; Jentsch et al., 2002; Magnenat et al., 1999; Müller et al.,

1991; Niedermaier and Moritz, 2000). While a few chromosomal

breakpoints, where new telomere addition occurs, have been

partially characterized (Bachmann-Waldmann et al., 2004;
Elsevier Inc.
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Figure 1. A. suum Early Embryo Develop-

ment, Cell Lineage, and Chromatin Diminu-

tion

Primordial germ cells (P) are in red, cells under-

going chromatin diminution are represented by

yellow filled circles surrounded by dots, and blue

cells (S) are precursor somatic cells and lineages.

The primordial germ cells numbers correspond

to their division state. P0 is the zygote, whereas

P1 through P4 represent the primordial germ

cell derived from each subsequent cleavage of

the germ cells as illustrated. S1–S4 cells are

successive precursor somatic cells derived from

each division of a germ cell (EMS, intestine,

body wall muscle, and pharynx; E, intestine; MS,

body wall muscle, neurons, somatic gonad, coe-

lomocytes, and pharynx; AB, nervous system,

hypodermis, and pharynx; C, body wall muscle,

hypodermis, and neurons; D, body wall muscle).

Adapted from Theodor Boveri (Boveri, 1899, 1910)

and Fritz Müller and Heinz Tobler (Goday and

Pimpinelli, 1993; Müller et al., 1996; Müller and

Tobler, 2000; Pimpinelli and Goday, 1989).
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Huang et al., 1996; Jentsch et al., 2002; Magnenat et al., 1999;

Müller et al., 1991) and three single-copy genes that are elimi-

nated have been identified (Etter et al., 1994; Huang et al.,

1996; Spicher et al., 1994), the full complement of eliminated

genes and sequences and the consequences for the somatic

cells remain unknown (Goday and Pimpinelli, 1993; Müller

et al., 1996; Müller and Tobler, 2000; Pimpinelli and Goday,

1989).

RESULTS AND DISCUSSION

Identification of Eliminated Sequences and Breakpoints
Associated with Ascaris Diminution
We deep-sequenced genomic DNA libraries from the sperma-

tids (germline) and intestine (somatic) of a single male

A. suum (Table S1 available online) to enable a genome-wide

analysis of DNA changes following diminution. We used these

data to independently assemble the germline and somatic

genomes (Table 1) and mapped the raw reads of the germline

and somatic genomes back to the germline assembly. These

analyses identified sequences that are eliminated to form the

somatic genome and DNA breakpoints associated with

A. suum chromatin diminution (Figures 2 and S1). Paired-end

and mate-pair reads for the germline and somatic regions

strongly supported the germline assembly, the identified break-

points, and DNA loss (Tables S3 and S4). The results indicated

that the major type of genome alteration is chromosome

breakage, loss of DNA sequence, and the healing of retained

chromosomes by telomere addition (Figures 3 and 4; Tables

S3 and S4). We found no evidence for the loss of interstitial

sequences followed by DNA fusions or other genome rear-

rangements. Breakpoints, DNA loss, and new telomere addition

identified in the genome sequencing data were confirmed using

specific PCR assays (Figures 2 and 3). Among the sequences

eliminated are at least 35 loci that may have arisen through

recent duplication and rearrangement in the A. suum lineage

(Figure 4).
Developmenta
Diminution Process Is Conserved in Distinct Somatic
Lineages and between Male and Female
To determine if diminution happens in the same way in all

somatic cell lineages (Figure 1), we compared the sequences

lost from the male intestine to those lost from other somatic

cell types (e.g., body wall muscle, pharyngeal muscle, hypo-

dermis, and neurons) (Table S1) in the same male. The intestine

is derived from a single cell (E) in the A. suum cell lineage

(Figure 1), whereas other somatic tissues are derived from addi-

tional and often multiple cell lineages that independently

undergo chromatin diminution (Figure 1, cells labeled AB, C,

and D) (Boveri, 1899, 1910). We found that the DNA loss and

chromosome breaks in an individual male are conserved

between the intestine and other somatic cell types (Figures 3D

and S1), suggesting that the mechanism and consequences of

diminution are the same in different cells. Additional comparison

of the sequence lost between the male and a female worm

shows a high degree of fidelity in the breaks and DNA loss

between individuals (Figures 3D and S1). However, there is

some heterogeneity in the exact position, with �80% of the

breaks occurring within 500 bp of each other within an individual

and �70% within 1,000 bp between individuals (Figures 3E

and S1), consistent with earlier studies (Bachmann-Waldmann

et al., 2004; Huang et al., 1996; Jentsch et al., 2002; Magnenat

et al., 1999; Müller et al., 1991). Analysis of DNA sequences

up to 5 kb on either side of the telomere addition sites did not

reveal any specific sequence motifs or other characteristics

that might mark the regions for chromosomal breakage (Fig-

ure S2; Supplemental Experimental Procedures).

A Large Number of Germline Genes Are Eliminated
During Diminution
Our analysis of the DNA lost revealed that �43 Mb (�13%)

of sequence is eliminated from the germline genome during

the formation of the somatic genome (Table 1). The majority

of the eliminated sequence (29 Mb, 70% of the eliminated

sequence) is the 121 bp satellite repeat sequence previously
l Cell 23, 1072–1080, November 13, 2012 ª2012 Elsevier Inc. 1073



Table 1. Ascaris suum Germline and Somatic Genome Assemblies

A. suum Genomes Features Germline Somatic Jex et al.a

Assemblies estimated genome size (Mb)b �334 �291 �309

total number of bp assembled (bp) 265,545,801 251,265,282 272,782,664

N50 of scaffolds (bp); N50 number 290,558; 260 65,087; 1,011 407,899; 179

N90 of scaffolds (bp); N90 number 48,674; 1,100 11,448; 4,399 80,017; 748

number of scaffolds (R2,000 bp) 31,538 (2,186) 37,686 (7,692) 29,831 (1,618)

maximum length of scaffold (bp) 1,465,500 600,478 3,795,215

N50 of contigs (bp); N50 number 49,549; 1,510 36,306; 1,925 23,038; 3,512

N90 of contigs (bp); N90 number 11,178; 5,601 7,566; 7,407 5,913; 11,869

Protein-coding genes putative coding gene number 15,446 14,761 18,542

average gene size (bp) 9,467 9,473 6,536

average coding sequence length (bp) 1,119 1,128 983

average exon number per gene 8.4 8.4 6

average exon length (bp) 201 201 153

average intron length (bp) 1,056 1,050 1,081

Noncoding RNAs ribosomal RNAs (rRNAs, copies for 18 s–5.8 s–26 s)b �500 �500 NA

splice leader RNAs (including 5 s rRNA)b �265 �265 NA

transfer RNAs (tRNAs) (+tRNA pseudogenes) 383 (+31) 172 (+13) 255 (+16)

microRNAs 100 100 100

Functional coverage % of cDNA contigs R 200 nt present (total 58,085)c 91.9% 88.2% 92.2%

% of cDNA bases present (total 58.1 Mb) 97.6% 94.6% 98.0%

% of unique small RNA reads mapped (total 20.2 M)d 81.3% 70.7% 76.3%

% of all small RNA reads mapped (total 690.7 M)d 89.1% 80.5% 78.6%

See also Figure S4 and Table S1.
aSee Jex et al., 2011.
bGenome size and repetitive RNA copy number estimation based on coverage (see Supplemental Experimental Procedures).
cFor the de-novo-assembled cDNA contigs, >90% of the sequence mapped back to the genome using BLAT.
dSee Wang et al., 2011.
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described (Müller and Tobler, 2000; Müller et al., 1982; Streeck

et al., 1982) (Table S2). No other major loss of repetitive

sequence was observed. The remaining �12.7 Mb of the elimi-

nated sequence is unique and includes at least 685 predicted

genes (Tables S5 and S6). We sought to identify whether the

eliminated genes shared any common features in their patterns

of expression. Genome-wide expression profiles were con-

structed by RNA-seq of poly(A)+ RNA from testis, ovary, embryo,

larvae, intestine, muscle, and other somatic tissues (Table S1),

and the expression level was measured by reads per kilobase

of template per million mapped reads (RPKM). Remarkably,

these results revealed that 85% of the eliminated genes are

expressed preferentially during gametogenesis or early embryo-

genesis and the remaining 15% are expressed in both (Figure 5;

Table S6). Most of these genes are expressed specifically in the

testis and therefore are likely involved in spermatogenesis.

However, not all genes expressed in the germline were elimi-

nated during chromatin diminution. Functional annotations of

the eliminated genes suggest that they are enriched for protein

kinases; protein phosphatases; proteins associated with chro-

matin, RNA, and nucleotide binding proteins; and translation

initiation proteins (Table S6). These proteins are associated

with network functions, including protein synthesis, RNA post-

transcriptional modification, gene expression, cell death, and

cellular compromise (Table S6). Notably, at least 49 of these
1074 Developmental Cell 23, 1072–1080, November 13, 2012 ª2012
eliminated genes are orthologs of well-characterized genes in

C. elegans whose loss is associated with clear phenotypes in

germline formation, gametogenesis, and early embryogenesis

(e.g., air-1, gld-2, cgh-1, gla-3, fer-1, spe genes, and pab genes)

(Table S6).

Eliminated Genes Suggest Biological Functions
for Diminution
We observed that �53% (363) of the eliminated genes have pa-

ralogs in the genome (Table S6). This is consistent with a model

where an ancient genome duplication in the A. suum lineage was

balanced by chromatin diminution to regulate gene dosage or to

provide amechanism for the selective retention of specific genes

and thus their function (Bachmann-Waldmann et al., 2004;

Goday and Esteban, 2001; Goday and Pimpinelli, 1993; Müller

et al., 1996; Müller and Tobler, 2000; Tobler et al., 1985, 1992).

A previous study demonstrated one of the two paralogs of ribo-

somal protein rps-19 gene was eliminated in A. suum, suggest-

ing that the two proteins may play differential roles in translation

(Etter et al., 1994). Recent data on rps-19 indicate that mutations

or knockdown of this and other specific ribosomal protein genes

in vertebrates leads to discrete changes in the translation of

specific messenger RNAs (mRNAs), but not general translation

(Horos et al., 2012; Kondrashov et al., 2011). Our observation

that a major group of the eliminated genes is associated with
Elsevier Inc.



Figure 2. A. suum DNA Elimination

(A) Germline and somatic read coverage for regions of the A. suum genome illustrating the retention of segments in both the germline and somatic tissue (top),

a region completely eliminated in the somatic tissue (middle), and a DNA breakpoint and region eliminated in the somatic tissues (bottom). Red designates

germline reads and blue are somatic reads, with the horizontal green line representing 50-fold coverage.

(B) Enlarged region of a scaffold (AG00103, Figure 2A bottom), illustrating the PCR strategy used to verify DNA elimination predicted from the comparison of the

germline and somatic genome sequences.

(C) PCR data confirm the elimination of DNA corresponding to scaffold AG00103 inA. suum somatic tissues. Note that the germline primer pair (G1/G2) produces

a PCRproduct in the germline DNA (gDNA), but not somatic DNA (sDNA). The somatic primer pair (S1/S2) leads to PCR products in both the germline and somatic

DNA, and the primer pair spanning the breakpoint (S1/G2) produces a PCR product only in the germline. gDNA, germline testis DNA, and sDNA, somatic intestine

DNA, were isolated from the single male worm from which the genome sequences were derived. The 1,006 bp PCR product present in all lanes represents

a control PCR corresponding to a single copy locus (miR-279) present in both the germline and somatic genomes.

(D) PCR data confirm the elimination of DNA in 17 additional independent loci in the A. suum somatic genome. The PCR strategy illustrated in (B) and (C) was

applied to these loci.

See also Figure S1 and Table S2.
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translation (Table S6) reinforces the idea that the translation

machinery may differ between the germline and soma. Notably,

we found that a number of translation initiation factors are elim-

inated from the germline (eIF4E, eIF5, eIF2 subunit 2, eIF3B,

eIF3C, eIF3D, eIF3i, and eIF2 subunit 3). Another nonexclusive

model of the function of diminution is that, in addition to the

elimination of the genes, the chromosomal regions eliminated

play an important role in chromatin organization that contributes

to broader gene regulation. For example, these regions may

repress genes in the germline or their elimination may activate

key somatic genes. We found no evidence of telomeric position

effect silencing of genes due to telomere addition (Huang et al.,

1996) (Figure S1) but cannot eliminate the possibility of other

indirect effects.
Developmenta
Ascaris Chromatin Diminution, Small RNAs,
and Marks for Chromosome Breaks
In ciliates, small RNAs (piRNAs) are known to play a key role in

the programmed DNA rearrangements and elimination (Chalker

and Yao, 2011). We looked previously for small RNAs (Wang

et al., 2011) that might be associated with Ascaris chromatin

diminution, in particular, RNAs mapping to the 121 bp repeat

element that constitutes �30 Mb of the eliminated sequence.

We characterized small RNAs before, during, and after chro-

matin diminution and found no correlation between the elimi-

nated repeats and any small RNAs. Furthermore, piRNAs and

PIWI Argonautes are absent in Ascaris (Wang et al., 2011).

Recent studies in C. elegans suggest that small RNAs also

play a role in the recognition of ‘‘self’’ versus ‘‘nonself’’ and in
l Cell 23, 1072–1080, November 13, 2012 ª2012 Elsevier Inc. 1075



Figure 3. A. suum Chromosome Breaks with Telomere Addition in Somatic Cells

(A) The PCR strategy used to verify telomere sequence addition in the somatic cells. Primer St (Somatic telomere) is a hybrid primer consisting of 30 nucleotides
corresponding to the unique somatic sequence and 50 nucleotides corresponding to telomeric sequence [(TTAGGC)n] (see Supplemental Experimental

Procedures for primers sequences).

(B) PCR data confirm telomere addition in the A. suum somatic tissues at breakpoint 15. Primers are defined in Figure 3A and genomic DNA sources defined as in

Figure 2C.

(C) PCR data confirm the telomere addition at six additional independent loci with chromosome breaks.

(D) Heterogeneity in breakpoints with telomere addition. Two breakpoints with telomere addition are illustrated. Note that the exact breakpoint for one of the loci in

different somatic tissues varies (intestine and carcass), particularly between individuals.

(E) Overall heterogeneity in breakpoints with telomere addition. For these 52 breakpoints, we compared the genomes of pairs of somatic tissues (intestine and

other somatic) from the same individual and between individuals and measured the difference in the position of the breakpoints identified.

See also Figure S2 and Table S3.
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multigenerational epigenetic inheritance (Ashe et al., 2012;

Bagijn et al., 2012; Buckley et al., 2012; Lee et al., 2012; Luteijn

et al., 2012; Shirayama et al., 2012). We re-examined the expres-

sion of Ascaris small RNAs (Wang et al., 2011) correlating with

chromatin diminution. We found no temporal or any other corre-

lation of small RNAs associated with regions retained, regions

eliminated, or the chromosome breakpoint regions. While

preliminary analyses of Ascaris polyA+ RNA levels (RNA-seq)

demonstrate that several Argonaute and other protein mRNAs

increase during the period of early embryo development leading

up to and during the time of diminution, their increased ex-

pression may not be correlated with diminution and could be

associated with the maternal to zygotic transition or serve other

functions during this complex period of development. Overall,

these and other data in Ascaris (including the loss of large

numbers of genes, the lack of discrete sequence elements that

mark sites of DNA breaks for telomere addition [Figure S2],

and the absence of removal of interstitial DNA sequences fol-

lowed by DNA fusion) suggest that the function and mechanism
1076 Developmental Cell 23, 1072–1080, November 13, 2012 ª2012
for DNA elimination in Ascaris may differ from the programmed

rearrangements in ciliates. As we did not identify discrete

sequence elements that mark the sites of DNA breaks, we

suggest that epigenetic marks (and even small RNAs yet to be

identified) could play an important role in defining chromosome

break sites and play a role in chromatin diminution. Additional

studies will be required to further examine these possibilities.

Recently, a preliminary genomic study on the programmed

DNA elimination in sea lampreys also demonstrated that unique

sequences were eliminated from somatic cells (Smith et al.,

2012). Among the genes eliminated in the somatic cells were

some involved in transcriptional programs that are likely to play

a role in maintaining germline function. Thus, elimination of

specific germline-expressed genes in metazoa may be

a common function of chromatin diminution.

Our work is a comprehensive analysis of the germline and

somatic genome from a metazoan, the DNA lost and the chro-

mosome changes that occur, and the elimination of specific

germline-expressed genes, suggesting a function for Ascaris
Elsevier Inc.



Figure 4. Loss of One Member of Dupli-

cated, Rearranged Loci

(A) Loss of one of two similar germline loci in the

somatic genome. Illustration shows two germline

loci in a germline cell containing common

sequences (>97% identical) (blue line), divergent

sequence (green or red lines), and the loss of one

germline locus in somatic cells following chro-

matin diminution. Primers and PCR strategy used

to verify loci in the germline and somatic genomes

are shown.

(B) PCR data confirm locus A is present in germline

cells but lost in somatic cells. Locus B is present in

both germline and somatic cells.

(C) Additional PCR data for other loci, demon-

strating the loss of one member of duplicated,

rearranged loci.

See also Table S4.
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chromatin diminution and a paradigm for DNA elimination.

A hallmark of most Metazoa is that germline cells are set

aside early in development. Soma-specific elimination provides

a unique mechanism of gene repression, reminiscent of

Weismann’s original theory of the differentiation between germ-

line and soma (Weissmann, 1893). Our comprehensive iden-

tification of the genome changes in the soma ofA. suum provides

the foundation for the elucidation of the features and epigenetic

changes underlying the mechanisms of selective DNA breakage

and DNA loss in chromatin diminution. Understanding chromo-

some breaks, telomere healing, and selective DNA loss in chro-

matin diminution is likely to offer insight into genome stability

and changes in normal processes and disease.

EXPERIMENTAL PROCEDURES

Sample Collection and DNA Isolation

A. suum samples were collected from pig intestines at a slaughterhouse in

Sandusky, OH, USA or Ghent, Belgium. A single male A. suum (USA) was

dissected and the spermatids, the intestine, the testis, and the remaining

tissue (carcass, which includes muscle, hypodermis, pharynx, and neurons)

collected, frozen in liquid nitrogen, and stored at �80�C. A single female

(USA) was dissected and the ovary/oviduct, uterus, intestine, and carcass

collected, frozen in liquid nitrogen, and stored at �80�C.

Genome Sequencing and Assembly

Sequencing

Genomic DNA libraries were constructed from A. suum germline and somatic

tissues and sequenced (Table S1). DNA isolation and libraries were con-
Developmental Cell 23, 1072–1080, No
structed using standard methods and Illumina

protocols and sequenced on the Illumina GAIIx

or HiSeq platforms, except where noted in the

Supplemental Experimental Procedures. Genomic

reads for assembly, scaffolding and analysis are

listed in Table S1. The fold coverage numbers in

Table S1 for all these libraries are derived from

high quality reads that can be mapped back to

the final assemblies.

Assembly

Reads from germline or somatic sources were

used to independently assemble the two

genomes. To minimize the sequence heteroge-

neity, we only used DNA sequences from a single

male for the generation of consensus sequences
within the assembly. Genomic reads for scaffolding (Table S1) were only

used to confirm and support the links that bridge contigs into scaffolds, and

none of these sequences were incorporated into the genome assemblies.

Because of the presence of some duplicated loci (Figure 4; Table S4), we

applied a ‘‘subassembly’’ strategy to capture all changes that occur in the

germline genome. First, we built an initial germline genome assembly using

velvet (v1.1.03) (Zerbino and Birney, 2008). From this assembly, we defined

�12.7 Mb of eliminated sequences (see below). All mappable germline reads

were divided into two groups: those reads to the 12.7 Mb eliminated regions

and all their pairs (from the paired-end andmate-pair libraries) and those reads

retained in the soma following diminution. Next, we assembled the two groups

of reads independently by using velvet (Zerbino and Birney, 2008). Finally, we

combined the eliminated and retained assemblies using phrap (http://www.

phrap.org/, v1.080812). Each assembly step was optimized and scaffolding

performed under the overall guideline of sequentially bridging gaps <200,

500, 1,500, and 3,500 bp with >20 pairs of supporting reads, and the assem-

blies were checked using the Tablet assembly viewer (v1.11.11.01). The

somatic genome was built using velvet, with >10 pairs of paired-end Illumina

reads or >3 pairs of Sanger capillary reads for scaffolding and the assembly

also checked using the Tablet viewer. Note the N50 of the somatic assembly

is not as good as that of the germline. This is mainly due to the lower average

sequencing depth on the large fragment paired-end library for the somatic

genome (compared with the germline) available for scaffolding.

Identification of Eliminated Sequences, Germline GenomeChanges,

and Breakpoints with Telomere Addition

We used two libraries generated and analyzed in parallel with similar coverage

(23 150 bp, 360 bp insert size,�503 coverage) from the single male sperma-

tids and intestine to map reads back to the germline genome assembly (bow-

tie2, v2.0.0-beta5) (Langmead and Salzberg, 2012) to identify eliminated

sequence and genome changes in the germline. We used a 100 bp window
vember 13, 2012 ª2012 Elsevier Inc. 1077
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Figure 5. Eliminated A. suum Genes Are Primarily Expressed in the Germline

(A) RNA expression of A. suum genes (n = 15,446) in different tissues. Gene expression enrichment was categorized by comparing RNA-seq data (Table S1) using

reads per kilobase of template per million mapped reads (RPKM).

(B) The 685 eliminated A. suum genes are highly expressed in the germline and early embryogenesis.

(C) Expression heatmap for all A. suum genes. Shown are expression heatmaps for different groups of genes illustrated in Figure 5A. For each gene, the colors

represent log2 values of fold changes to the average expression level (RPKM) for a gene in different stages. For each group of genes, the eliminated/total number

of genes is indicated, and a red vertical line above the heatmap marks the genes eliminated (see Figure 5D).

(D) The expression profiles of eliminated A. suum genes. See Figure 5C for the legend. Note that, for the 104 genes in the Other group, the majority of them are

expressed in testis, ovary, and the early embryo.

See also Figure S3 and Tables S5 and S6.
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to scan the genome for regions with a somatic/germline coverage ratio <0.1 to

provide an initial set of long sequence blocks containing potentially eliminated

sequences. To identify germline genome changes, we manually checked all

scaffolds R3 kb with R500 bp contiguous coverage. We identified 102 loci

with DNA alterations (Tables S3 and S4). We then compared their sequences

(10 kb flanking the changes) to the somatic genome assembly, identified their

exact positions where DNA loss occurred, and used these positions to estab-

lish the eliminated and retained regions in scaffolds. Germline scaffolds that

did not harbor any DNA breakpoints were defined either as retained or elimi-

nated based on the coverage ratio (see Figures 2A and S1 for examples).

From the somatic assembly, we also identified DNA breakpoints with addition

of telomeres. Somatic scaffolds with telomeric sequences were independently
1078 Developmental Cell 23, 1072–1080, November 13, 2012 ª2012
confirmed by paired-end reads (Table S3) and PCR (Figure 3A–3C). For those

DNA changes without telomere addition, their somatic loci were evaluated by

germline paired-end reads (Table S4) and PCR analysis (Figure 4) to confirm

their presence in the germline.

RNA Preparation, RNA-Seq, and Assembly

Samples for RNA preparations are the same as those described for DNA prep-

arations above or previously (Wang et al., 2011). Total RNA was prepared,

and RNA-seq libraries were made and sequenced as described (Wang et al.,

2011). For each sample, 200 mg of total RNA was used for poly(A) selection

and 200 ng of poly(A)+ RNA was used to make the complementary DNA

(cDNA) libraries. Two cDNA assemblies were made by using all the RNA-seq
Elsevier Inc.
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data: one is a de novo assembly using velvet/oases (v1.1.03/v0.2) (Zerbino and

Birney, 2008), which has been used for the genome functional coverage

assessment and gene annotation pipeline, and the other is a map-based

assembly using tophat/cufflinks (v1.3.0) (Trapnell et al., 2012), which was

used to facilitate gene prediction (see below).

Gene Model Prediction

We integrated gene evidence from multiple sources to build gene models for

the A. suum germline genome. First, a two-pass MAKER (Holt and Yandell,

2011) annotation pipeline (v2.22) was used. In the first pass, evidence was

used from the RNA-seq assembly, alignments to the Swiss-prot protein

database, predictions of the ab initio gene finders SNAP (v2010-07-28)

(Korf, 2004), and trained using CEGMA (v2.0) (Parra et al., 2007) gff output

and GeneMark-ES (v2.3e) (Lomsadze et al., 2005). For the second pass,

first-pass MAKER gff files were used to train Augustus (v2.5.5) (Stanke and

Waack, 2003) and retrain the SNAP models, and MAKER was rerun with the

addition of these two programs. Second, we annotated genomic regions

without MAKER genes by RNA-seq data using tophat/cufflinks (v1.3.0) (Trap-

nell et al., 2012). Last, regions withoutMAKER and tophat/cufflinks geneswere

further annotated with transferred annotations from a published A.suum

assembly (Jex et al., 2011) by using RATT (Otto et al., 2011). The final gene

set consists of 11,446 genes from MAKER, 2,947 genes from tophat/cufflink,

and 1,053 genes from RATT.

Gene Expression Analysis

To profile the tissue expression of all A. suum genes, we used eight different

developmental stages/tissues of A. suum, including testis, ovary, embryo,

larvae, intestine, muscle, male carcass, and female carcass (Table S1). For

each predicted gene, their expression level (RPKM) was calculated using

tophat/cufflinks (Trapnell et al., 2012). Genes with a RPKM R2 and the

RPKM R1.5-fold higher in one particular tissue compared to all other tissues

were defined as enriched gene expression in a particular tissue (maternal

genes RPKM R 2/3 times higher than the embryo) (Figures 5; Table S5).

This is a relatively high stringency cutoff due to the existence of neighbor/

similar tissues in development, such as ovary/embryo/larvae and muscle/

male carcass/female carcass in this analysis. The expression profiles for

tissue-specific genes and other genes were clustered by using Cluster (v3.0)

(Eisen et al., 1998) and visualized in heatmaps using treeview (http://

jtreeview.sourceforge.net/) (Figure 5). For these analyses, the average expres-

sion in muscle, male carcass, and female carcass was used to estimate the

baseline expression level for other somatic tissues. Groups of enriched genes

are also illustrated in dotplots for enriched tissue versus all other tissues

(Figure S3).
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