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Self-Driving DeCal Syllabus 
 

CS 198-95 Fall 2019 
Location: Soda 310, Time: ​Tuesdays 6:30-8:30 
2 Units 
 

Instructors 
 
Aidan Abdulali: (917) 501-6496, ​aidana@berkeley.edu 
Arjun Sripathy: (408) 621-9853, ​arjunsripathy@berkeley.edu 
Brandon Trabucco: (971) 708-8517, ​btrabucco@berkeley.edu 
 

Class Format 
 
Small-group work sessions, personalized instructor mentors, and weekly lectures. 
 

Course Objective 
 
We aim to teach the technological foundation of autonomous driving, the development 
of new algorithms in this field, and how to implement these algorithms to create an end 
to end autonomous vehicle. Students should leave the course with their own fully 
functional self driving car in simulation and a rich understanding of the algorithms 
necessary to pursue car automation further, whether in industry, research, or just for 
fun. Students will pick up the fundamentals of machine learning, object detection and 
segmentation, trajectory planning, and motion control. Students will become proficient 
using important libraries in these domains. 
 

Key Learning Outcomes 
 

● Become knowledgeable about the various systems in place that facilitate self 
driving cars and how they interact and compliment each other   

● Develop a strong understanding of machine learning: what is it and how can I 
apply it to various classification, regression, and decision making problems 

● Leave with a fully functional simulated self driving car which can perceive its 
surroundings, plan paths, and follow a path using both classical control and 
reinforcement learning 
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Guiding Principles 
 

● Tether curriculum to a single simulator (duckietown) and project 
○ Allows the assignments to build on work done in previous weeks  
○ Maintains engagement by providing a central goal 
○ Cuts down the number of python packages and APIs students must learn 

● Incrementally build machine learning knowledge in simulator 
○ For example: map pedal inputs to acceleration to calculate speed via 

linear regression. Can add a nonlinearity to promote the use of a fully 
connected network in this system during the following week. 

● Emphasize interaction between teachers and students 
○ Vastly helps with frustration and efficiency when students are working on 

hard portions of their project 
○ Helps personalize the course and assure that no students fall through the 

cracks / lose sight of the goal 
 

Methods of Instruction 
 

● Combination of lecture and group work 
● 75 min lecture to go over systems, math, and problem approaches 
● 45 min group work so students can discuss ideas amongst themselves and ask 

for help with their assignments / understanding 
● Project to create a fully functional self driving car in simulation 

 
Meeting Frequency 

 
● Weekly 2 hour meetings 
● Office hours on the weekends 

 
   



Page 3 

Grading Policy 
 

● (30%) Homework: checkpoints for the following week will be discussed at the 
end of each class and teachers will walk around the room and evaluate each 
group’s programming work and attendance. Also groups will push their codebase 
to github every week and it will be verified that they are on track 

● (30%) Final project: does the final project successfully navigate the car from 
point A to point B? If not, how many modules in the system work? 

● (20%) Attendance: One free absence; warning at two unexcused absences; three 
= NP 

○ Excuses: Medical; Family Emergency; Mandatory Previously Unknown 
Obligation (sporting tournament in a different state, etc.) 

● (20%) Participation: is this person contributing to their group, asking questions, 
being active in class, and  

● Pass: students must have at least a 70% in the class and meet attendance policy 
 

Lecture Topics/Schedule 
 
Week 1: Overview of the Course and Duckietown 
Week 2: Introduction to Machine Learning and Linear Regression 
Week 3: Introduction to Deep Neural Networks 
 
Week 4:  Object Detection with CNNs 
Week 5:  Image Segmentation with CNNs 
Week 6:  Integrating Vision and System ID with Duckietown 
 
Week 7:  Trajectory Planning 
Week 8:  Following Waypoints with PID and LQR 
Week 9:  Integration of Planning and Controls with Duckietown 
 
Week 10:  Learning to Drive by Imitation 
Week 11:  Model-Based RL from Pixels 
Week 12:  Guest Lecture 
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Week 1: Overview of the Course and Duckietown 
 

Outline: 
 

● Introduction to the course and motivation for learning  about self driving cars 
● Go over how we are teaching: in a small class setting emphasizing group work 

and instructor interaction 
● What are the goals of self drivings cars? They are a service to humans which 

provide full automation of locomotion and control; aka a hand a mind free 
experience 

● What are the expectations of students and how can they be successful in this 
course? 

● Demonstration of the duckietown environment and instructions on how to install 
and get familiar 

● Transitions into the group finding portion of this lesson 
● Demonstration of the duckietown environment and our self driving setup… what 

you will achieve by the end of this course 
 

Assignment: 
 

● Set up the duckietown environment, install all the dependencies, and capture a 
video of you manually exploring a provided simulation environment 

 
Recommended Readings: 

 
● Motivation (MIT Technology Review): 

https://www.technologyreview.com/s/61275 4/self-driving-cars-take-the-wheel/ 
 
 
 
 
 
 
 
 
 
 
 

https://www.technologyreview.com/s/612754/self-driving-cars-take-the-wheel/
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Week 2: Introduction to Machine Learning and Linear Regression 
 

Outline: 
 

● What is the fundamental principle behind all machine learning algorithms? 
Instead of writing a function to go from input to output like F(x) = y, we can learn 
the function by looking at inputs and outputs and realizing patterns 

● How do we define this problem mathematically? We need a sense of how well we 
are doing (least squares) and a way to get better over time (optimizers) 

● What is a loss function, linearity vs nonlinearity, and how can we reduce our loss? 
● We approach solving the linear regression problem from the standpoint of linear 

algebra (derive least squares regression on the board) 
● Derive the least squares solution to linear regression.  
● Formulate a simple least squares problem on the board and then solve it using 

hard coded functions in python 
 

Assignment: 
 

● Linear regression to map pedal input to acceleration. Assignment sheet and 
office hours will be released after lecture 

 
Recommended Readings: 

 
● Linear Algebra: ​https://medium.com/@andrew.chamberlain/the-linear-alg 

ebra-view-of-least-squares-regression-f67044b7f39b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://medium.com/@andrew.chamberlain/the-linear-algebra-view-of-least-squares-regression-f67044b7f39b
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Week 3: Introduction to Deep Neural Networks 

 
Outline: 

 
● With the understanding of linear regression, we can now look at more interesting 

scenarios like nonlinearities 
● We cannot always model data with lines (quadratic patterns, jumps in the data) 
● We can use a fully connected neural network with nonlinear activations to model 

○ What is a neural network? 
■ What is an activation function? 
■ What does a node represent 
■ What does an edge represent 

○ What does fully connected mean? 
● How do we train a neural network? 

○ Gradient descent overview (backprop, partial derivatives, ...) 
 

Assignment Description: 
 

● Fully connected networks for nonlinear data 
● Assigned week 3; due week 4 

 
Recommended Readings: 

 
● Backpropagation: ​https://colah.github.io/posts/2015-08-Backprop/ 

   

https://colah.github.io/posts/2015-08-Backprop/
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Week 4: Object Detection with CNNs 
 

Outline: 
 

● Why are fully connected networks bad for images? 
○ How can we reduce the number of trainable parameters? 

● What is a convolution? 
● How does a convolution work over an image? 
● How can we learn filters for a specific task using what we already know? 
● Can we apply a CNN to a problem in duckietown? 

○ Yes; duck detection 
 

Assignment: 
 

● Building and training a duck detector 
● Assigned week 4; due week 5 

 
Recommended Readings: 

 
● CNNs: ​https://colah.github.io/posts/2014-07-Conv-Nets-Modular/ 
● Convolutions: 

https://colah.github.io/posts/2014-07-Understanding-Convolutions/ 
 
   

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Understanding-Convolutions/
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Week 5: Image Segmentation with CNNs 
 

Outline: 
 

● Images are rich with information: we do not need all of it 
○ Can we compress duckietown images into more useful numbers? 

● What if we aren't just trying to answer a yes / no question but rather looking to 
classify what is in an image? 

○ Classification 
○ How do we deal with this? 

■ Softmax function 
■ Outputs as probabilities 

○ We can now see if a more general object is in a duckietown image 
● What if there are multiple objects? 

○ Segmentation 
○ Multiple class softmax 

 
Assignment: 

 
● Implement a segmentation algorithm and classify each segment 
● Assigned week 5; due week 6 

 
Recommended Readings: 

 
● Image segmentation: 

https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentati
on-techniques-python/ 

 
   

https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/


Page 9 

Week 6: Integrating Vision and System ID with Duckietown 
 

Outline: 
 

● Recap of what we have done so far and why we have learned about regressions, 
fully connected networks, and CNNs 

● How do we tie these threads together to do something interesting in duckietown? 
○ Learn about the environment while manually driving around 

● Lots of time during class this day for debugging and instructor help 
 

Assignment: 
 

● Segment, detect, and classify objects in the duckietown environment in real time 
● Assigned week 6; due week 7 

 
Recommended Readings: 

 
● How do Self-Driving Cars See? 

https://towardsdatascience.com/how-do-self-driving-cars-see-13054aee2503 
   

https://towardsdatascience.com/how-do-self-driving-cars-see-13054aee2503
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Week 7: Trajectory Planning 
 

Outline: 
 

● Optimized motion planning introduction 
○ Leverage benefits of randomness 

● Trajectory Optimization 
○ Defining constraints 
○ The formal math 

● What computational tools can we use to solve these problems? 
● Introduction to trajopt package 

○ How are we going to use trajopt so we don’t need to repeat the math we 
did today? 

 
Assignment: 

 
● Plan a series of paths from a set of As to a set of Bs using trajopt 
● Assigned week 7; due week 8 

 
Recommended Readings: 

 
● TrajOpt paper: ​http://joschu.net/docs/trajopt-paper.pdf 
● Textbook Chapter: 

http://underactuated.mit.edu/underactuated.html?chapter=trajopt 
● Code release: ​https://github.com/joschu/trajopt 

 
   

http://joschu.net/docs/trajopt-paper.pdf
http://underactuated.mit.edu/underactuated.html?chapter=trajopt
https://github.com/joschu/trajopt
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Week 8: Following Waypoints with PID and LQR 
 

Outline: 
 

● Demonstrate a simple Proportional Controller controlling a point mass following 
randomly generated 2D waypoints in a jupyter notebook. 

● On Latex slides, derive the Proportional Feedback Controller from an error 
function, and study the empirical stability of Proportional Control. 

● Demonstrate the instability of Proportional Control when the waypoint is 
constantly moving away, to motivate the PD and PI Controllers. 

● Derive the PD controller, and study the empirical stability of it. Demonstrate the 
PD controller in the same point mass environment. 

● Derive the PI controller, and study the empirical stability of it. Demonstrate the PI 
controller in the same point mass environment. 

● Assemble everything into the PID controller. Allow students to experiment with 
various settings of the tuning coefficients, and discuss automatic tuning 
methods, see the recommended readings. 

● Demonstrate LQR to control the same pointmass with randomly generated 
waypoints, and have students compare it to PID. 

● Derive LQR, and have students code in their own cost function. 
 

Assignment: 
 

● Students will implement a PID controller in python, and use PID to control the 
duckietown car to follow waypoints in the duckietown simulator. 

● Students will leverage an existing iterative LQG library to control the duckietown 
car to follow waypoints, by defining their own cost function 

 
Recommended Readings: 

 
● Automatic tuning of PID: ​https://ieeexplore.ieee.org/document/7898617 
● LQR, DDP, and LQG: ​http://cs229.stanford.edu/notes/cs229-notes13.pdf 
● Blog summary of LQR: 

https://medium.com/@jonathan_hui/rl-lqr-ilqr-linear-quadratic-regulator-a5de510
4c750  

● Blog summary of PID: 
https://medium.com/@mattia512maldini/pid-control-explained-45b671f10bc7  

   

https://ieeexplore.ieee.org/document/7898617
http://cs229.stanford.edu/notes/cs229-notes13.pdf
https://medium.com/@jonathan_hui/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750
https://medium.com/@jonathan_hui/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750
https://medium.com/@mattia512maldini/pid-control-explained-45b671f10bc7
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Week 9: Integration of Planning and Controls with Duckietown 
 

Outline: 
 

● Quickly recap the software stack that students have built up so far: System ID, 
Object and Road Detection, Path Planning, and Waypoint Reaching. 

● Demonstrate a complete project, which plans a path to follow, using the detected 
position of the road, uses feedback to follow the path, and maps accelerations to 
motor powers using the System ID. 

● Break down the block box communication that occurs between each module, and 
the abstractions that are being relied on. 

● Present how to integrate everything in reverse order. Begin with controls, and 
guide students to connect this with their state-based path planner. 

● Then, present how to migrate from a state-based path planner to a purely vision 
path planning algorithm (involves localization). 

 
Assignment: 

 
● Students will integrate their controller with their path planning algorithm in the 

duckietown simulator. The choice of PID or LQR is up to the student. 
● Students will integrate path planning with their vision processing pipeline. 

Images are mapped to locations in a known world model, and object are avoided 
by weighting these regions with high cost to the planner. 

 
Recommended Readings: 

 
● Using SLAM for localization: 

https://medium.com/slamcore-blog/the-cumulative-levels-of-slam-competence-
5576f33c1c2a 

● Dynamic obstacle avoidance: 
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2008_3/ferguson_david
_2008_3.pdf 

   

https://medium.com/slamcore-blog/the-cumulative-levels-of-slam-competence-5576f33c1c2a
https://medium.com/slamcore-blog/the-cumulative-levels-of-slam-competence-5576f33c1c2a
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2008_3/ferguson_david_2008_3.pdf
https://www.ri.cmu.edu/pub_files/pub4/ferguson_david_2008_3/ferguson_david_2008_3.pdf
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Week 10: Learning to Drive by Imitation 
 

Outline: 
 

● Discuss the limitations of the previously employed methods for controlling UAVs. 
Namely, the need for a fixed and prespecified driving map. 

● Present a demo of ChauffeurNet, based on the released simulator and the 
provided visualizations scripts with the paper. 

● Explain how ChauffeurNet begins to address the limitations of the path planning 
algorithm, in isolation of localization and controls. 

● Discuss the limitations and prospects of algorithms like ChauffeurNet in a panel 
format, with the whole class. 

 
Assignment: 

 
● There is no technical assignment this week. Students are to continue working on 

system integration of the components presented last week. 
● There will be a short paragraph reflection due about the limitations of the 

algorithms that students are currently using. 
 

Recommended Readings: 
 

● Chauffeur Net paper: ​https://arxiv.org/pdf/1812.03079.pdf 
● Learning to Drive: Beyond Pure Imitation: 

https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8b
cb2  

● Nvidia DAVE-2: ​https://devblogs.nvidia.com/deep-learning-self-driving-cars/ 
 
   

https://arxiv.org/pdf/1812.03079.pdf
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://medium.com/waymo/learning-to-drive-beyond-pure-imitation-465499f8bcb2
https://devblogs.nvidia.com/deep-learning-self-driving-cars/
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Week 11: Model-Based RL from Pixels 
 

Outline: 
 

● Discuss the limitations of the previously employed methods for controlling UAVs. 
Namely, the need for a robust controller and localization mechanism. 

● Present a demo of SOLAR, trained instead on a simple duckietown task, that 
requires learning how to stop at a stop sign and make a turn. 

● Explain how SOLAR begins to address the limitations of modularized algorithms 
for controlling vehicles, but also introduces new limitations. 

● Discuss the limitations and prospects of algorithms like SOLAR in a panel format, 
with the whole class. 

 
Assignment: 

 
● There is no technical assignment this week. Students are to continue working on 

system integration of the components presented last week. 
● There will be a short paragraph reflection due about the limitations of the 

algorithms that students are currently using. 
 

Recommended Readings: 
 

● SOLAR paper: ​https://arxiv.org/abs/1808.09105 
● Blog post about SOLAR from BAIR: 

https://bair.berkeley.edu/blog/2019/05/20/solar/  
 
   

https://arxiv.org/abs/1808.09105
https://bair.berkeley.edu/blog/2019/05/20/solar/
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Week 12: Guest Lecture 
 

[To Be Determined] 


