
BUILDING CONSENT 101241P

PROPERTY ID

097436

Engineered By:

Vermont Consultants

Structural Engineers

Producer Statement Structural Details

CLIENT:

Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth

BUILDING:

Document Set ID: 899816

Version: 1, Version Date: 14/01/2010

Size & Stud Height: 8.825m long x 5.900m wide, with 2.400m stud height, Bay Size 3.000m Wind Zone: HIGH Area: 52.068m²

Steel Framed Enclosed Buildings

NOTES

Copyright: These drawings must not be reproduced without express permission from Vermont

Consultants and Versatile Buildings Limited

Building Classification: Current AS/NZ Standards relied upon - AS/NZS 1170.0 to 1170.3:2002, NZS 4203:1992

AS/NZS 4600:2006 for this building design

INDEX

Cover Page (this page)

Producer Statement: Vermont Consultants - Design

Producer Statement: Versatile Buildings/BHP - Durability

Specifications - Building Components

Site Plan

Building Elevations

Foundation Details

Section - End Wall

Building Details

Roof Plans

Flashing Details

Bracing Reference

Wind Load Details

I certify that buildings erected in accordance with these drawings will conform to the requirements of the New Zealand and Australian Building Codes.

Stan Theodore Olech - MengSc, MIEAust (since 1980), CPEng NPER-3 351935

NPDC Approved

17 APR 2008

PRODUCER STATEMENT - DESIGN

Vermont Consultants Issued by: SmartSteel, New Zealand to:

for the: **Local Building Authorities**

Cold formed steel SmartSteel 4x6, 6x6, 6x7 and 6x9 portal framed buildings

Frames eaves height - 2.4 m Frames spacing - 3.0 and 3.5 m Length of building - 2 or 3 bays

We hereby certify that we have designed the abovementioned building work in accordance with the principles of structural mechanics and if constructed reasonable in accordance with drawings listed above, building shall be capable of sustaining the most adverse combinations of loads to which it will be subjected with the relevant provisions of the Building Regulations and NZ Standards. The basic used design criteria and assumptions are:

1. Current AS/NZ Standards relied upon: AS/NZS 1170.0 to 1170.3:2002, NZS 4203:1992, AS/NZS 4600:2006.

2. Structural Design Criteria:

2.1 Wind Load:

Region A & W

Regional wind speed:

V(A) = 41 m/s, V(W) = 47 m/s

Design wind classification:

w45 (High wind) and w50 (Very high wind) in accordance

with the attached table.

2.2 Snow Load:

Sg = 1.0 kPa

2.3 Design roof live loads:

LL = 0.25 kPa

2.4 Soil design bearing pressure: 75 kPa min

3. Durability Protection:

Normal

Company Name: Vermont Consultants

Approved Person: Stan Theodore Olech

Qualifications: MEngSc, MIEAust (since 1980) Registration No.: CPEng NPER-3 351935

NZ Professional Indemnity Insurance cover - \$5 000 000.00 Policy No.: F1049452TM

Signed:

25 August 2006

Address 7 Downey Court

Albany Creek Qld 4035

Document Set ID: 899816

Version: 1, Version Date: 14/01/2010

عر الما به

MANUFACTURERS STATEMENT - DURABILITY

To satisfy the requirements of Clause B2:"Durability" of the NZBC and to ensure the cladding material meets a durability life the following provisions must apply:

Range of Product and Use

Specification:

AS1397:2001

Coating Type:

Application:

Fasteners:

Zinc/Aluminium & Painted.

Steel Thickness Range: 0.35mm - 0.95mm BMT

G300 - G550

Steel Grade Range:

Standard Totalspan Roof Cladding on Class V Building category as per NZS4203:1992 and

AS1170.2:2002 Table 3.2.9

Screws to be #10 x 16 Tek screws, Class 3 Zinc plated to comply with AS/NZS1111.2-2000

Bolts to be M10 & M12-4.6.3 Hex commercial zinc plated to comply with AS/NZS 1111.2-2000

Screwbolts to be M10x75 Zinc plated complying with AS3566.2-2002

Requirements, Limitations and Exclusions

- Applicable to buildings in Sea-Spray zone and exposure zones 1,2,3 & 4 in accordance with Clause 4, Durability, NZS 3604:1999 which is an acceptable solution under clause B2 of the NZBC.
- Fixing and installation of the cladding must be done exactly in accordance with Totalspan Buildings Fixing Guide
- Normal and regular maintenance must be carried out on the exterior surface of the cladding and the following guide must be followed to ensure the durability requirements are met.

Regular Maintenance

Exposure Zones 1,2,3 & 4. (All areas other than sea spray zones - see below)

Rain washing only required on exposed sections, sheltered or protected areas such as under spouting, top cladding boards and tops of doors require washing every 3 months.

Sea Spray Zones (Within 500m from the sea or 100m from sheltered harbours or inlets) and areas of Geothermal Activity.

Rain-washing only required on exposed areas. Sheltered and protected areas such as under spouting, top cladding boards and tops of doors require washing down every month and whenever corrosive salts are present.

Extended Maintenance, Painting or Repainting

Extended Durability

Once the metallic coating or the paint system has weathered away, signs of red rust for bare materials or signs of the metallic coating for painted material, painting of the entire surface is required to extend the life of the cladding product. Paint manufacturers recommendations are to be followed for surface preparation and paint type to be used.

Evident Corrosion

Areas that show signs of white or red rust/corrosion (typically unwashed areas) require cleaning back with a stiff brush and cleaner to remove all dust, surface contaminants and corrosion products and present a sound substrate for painting. Priming of the surface and application of two coats of paint as per the Paint Manufacturer's recommendations is then required. Particular attention needs to be paid to laps (side, end, flashing etc) where earlier corrosion may start due to moisture and dirt entrapment. If evident corrosion is not treated quickly, rapid deterioration of the sheet may occur which could result in perforation. At this stage replacement of the affected sheet is the best option.

References

1. NZS 3604, Clause 4, Durability.

2. Totalspan Buildings Assembly Instructions

3. New Zealand Building Code 2004

4. Australian Building Code 1989

Jeffrey Geayley

Dated: 5th April 2006

for Totalspan Buildings Limited

112 Waterloo Road Christchurch New Zealand

NPDC Approved 17 APR 2008

Building Tables

Girt Rows - End Wall

· u·

Wind Zone: High
Bay Size: 3.0m
Live Roof Load: 0.25 kpa
Open Ground Snow Load: Sg 1.0kPa
Inner Purlins: C80x40
Ridge & Gutter Purlins: C80x40
Purlin Bridging Number: 6
Purlin Bridging: C80x40

Wind Region: Region A6-A7 (High)

Row Numbers: 8

Top and Bottom Girt Type: C80x40
Middle Girt Type: C80x40
End Wall Centre Unright: B80x40

End Wall Centre Upright: B80x40
Portal Legs: B80x40
Portal Rafters: B80x40

GENERAL

- 1- All work shall conform to the Australian and New Zealand building codes & relevant standards.
- 2- Check diagonals to ensure building is square.
- 3- Drawings shall not be scaled for any fabrication or erection details

LOADINGS

- 1- Dead and live load is calculated in accordance with AS/NZS 1170.0 & 1170.1:2002. DL = 0.05kPa, LL = 0.25kPa.
- Wind load in accordance with AS/NZS 1170.2:2002 and adopted to NZ regions 6-AS 4055-2006. Buildings are designed for high wind in accordance with the attached "NZ wind classification system" table.
- 3- Snow load in accoradnce with AS/NZS 1170.3:2003. Structural roof members are designed for ground snow load Sg = 1.0 kPa.
- 4- The importance level 1 of the structure is determined in accordance with AS/NZS 1170.0:2002.

FOUNDATIONS

Support ground shall have a safe bearing capacity of at least 75kPa (dense sand or firm clay).

In weaker ground or expansive days, building loads shall be taken to subsoil which has a bearing capacity of at least 75kPa.

CONCRETE

- 1- Remove vegetation & loose material from the site of the building, backfill with compacted hardfill if required, & lay a 50mm blinding of sand to the underside of the concrete slab. Ensure the surface of the slab will be at least 100mm above the highest level of cleared ground around the slab.
- 2- Provide a 0.25mm black polythene dampproof & slip layer under the slab taped 6- with 100mm laps (optional but recommended).
- 3- Concrete shall have a maximum aggregate size of 20mm, slump of 80mm maximum & a 20MPa compression strength at 28 days.
- The concrete floor slab shall be 100mm thick with a 200x200mm edge thickening & a 1xD16 rod continuous around the perimeter of the slab with 600 laps & 75 bottom cover.
- 5- Concrete slabs to have construction joints keyed during placing or cut in panels not exceeding the following dimensions:

Unreinforced 3mx3.9m

Fibre reinforced 4mx6m (Fibre dosage 0.7kg/cum)

Mesh reinforcement 6mx12m (668 mesh, 225 taps, 30mm top cover)

Fix roof frames to concrete with M10 galvanised screwbolts screwed into holes drilled in the slab. (75mm embedment) or alternatively use M10 chemset bolts

STEELWORK

- 1- All structural framing members shall be G550-0.75mm BMT,
- 2- Purlins & girts shall be 80x40x0.75 B.M.T G550, lipped, crimped channel located at centres shown on drawings.
- 3- Boxed members to be flange fixed with #10 tek screws at 600 centres.
- 4- Screws to be #10x16 tek screws class 3 zinc plated, fixed at a minimum edge distance of 6mm & to a 12mm minimum pitch. All cleats and brackets shall be min. G450 Galvanised to min. Z200
- Girts to be connected to frames with 2 #10 tek screws to each flange of girt.
 - Steelwork shall comply with the following current standards:
 - AS / NZS 4600 Cold formed steel structures code
 - AS 1562.1 Design and installation of sheet roof and wall cladding.
 - AS 1397:2001 Steel sheet and strip hot dipped zinc coated or aluminium / zinc coated.
 - AS 1111.1 and 2-2000 ISO metric hexagon bolts and screws

CLADDING

- 1- Roof & wall sheeting shall be 0.35 B.M.T, G550 grade steel zincalumed to AZ150 & rolled to profile (refer detail B).
- Sheeting shall be fixed with 1 #10 tek screw to edge of each crest (rib) (detail B) at ridge & eaves & for 1 sheet width at ends of buildings for roofing & at eaves & 1 sheet width of each pan at corners of buildings for wall sheeting.
- Roof sheeting shall be fixed with 1 #12x35 tek screw to each sheet join and every alternate rib. Wall sheeting shall be fastened with 1 #10 tek screw to each sheet join then every alternate pan.
- All roof fixings shall have neoprene washers between the screw & sheeting.
 Ridges, barges & all wall penetrations to be flashed with 0.35mm zincalumed steel & to be water tight.
- Guttering to be sealed with a neutral silicone & fixed with tek screws and be water tight. Fit downpipes to guttering to discharge to an approved stormwater drainage system. Gutter and downpipes to be fixed to framing by tek screws.

NPDC Approved 17 APR 2008

Vermont Consultants

structural consulting engineers

7 Downey Ct Albany Creek, QLD

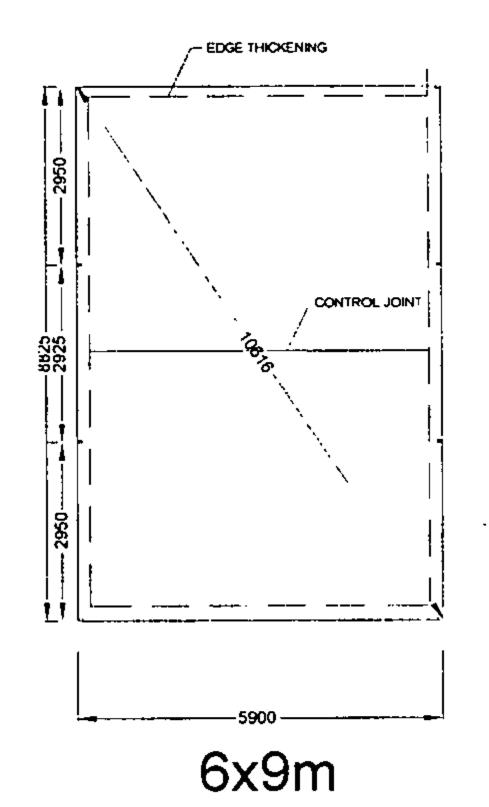
Phone +61 7 3264 8409

I certify that buildings erected in accordance with these drawings will comply with the New Zealand Building Code.

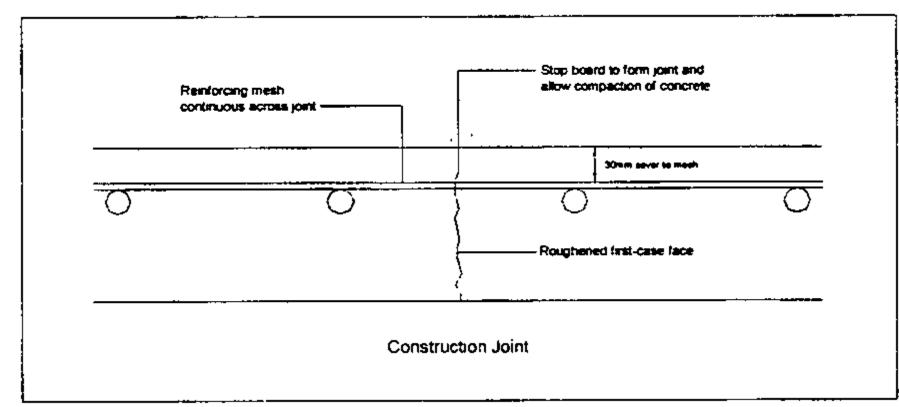
Stan Theodore Olech MengSc, MIEAust (since 1980) CPEng NPER-3 351935 smartsleel

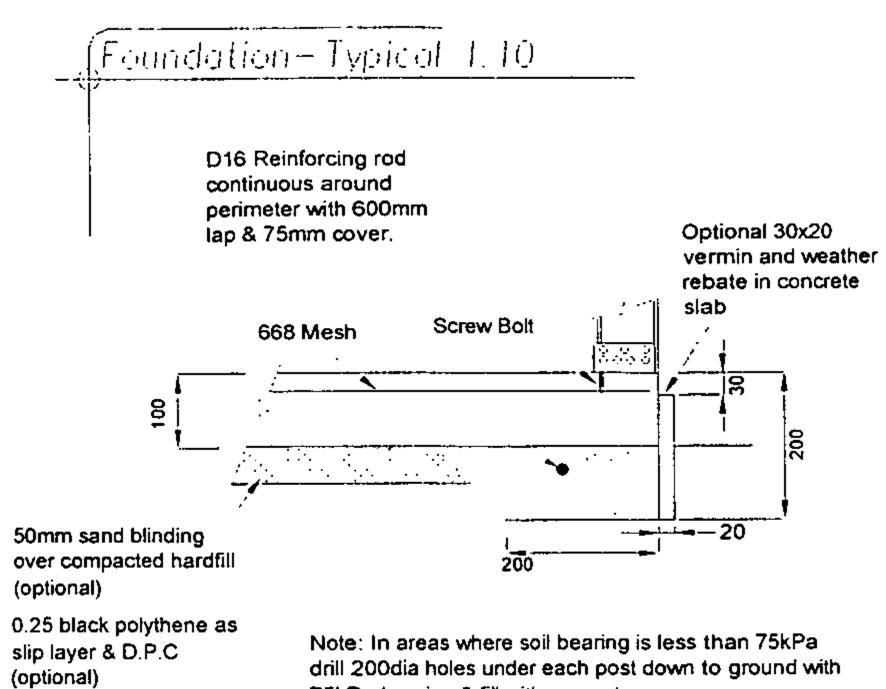
A Division of VERSATILE BUILDINGS LTD

112 WATERLOO ROAD, HORNBY


P.O. BOX 11-013, CHRISTCHURCH

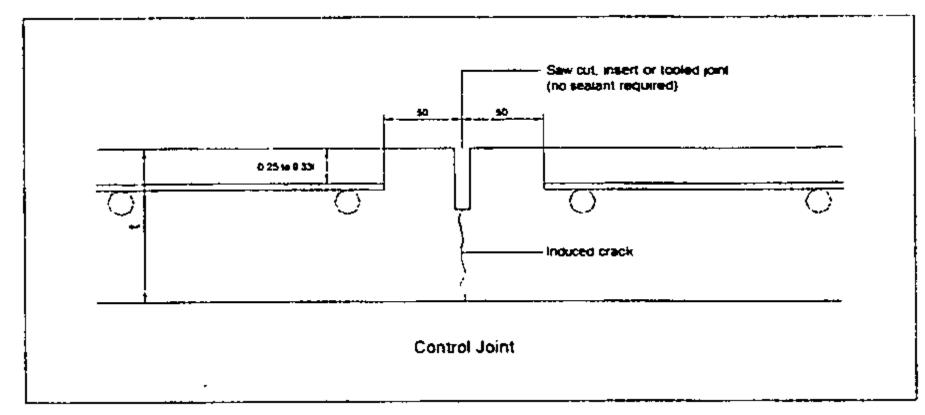
PH: (03) 349 1285 FAX: (03) 349 1286

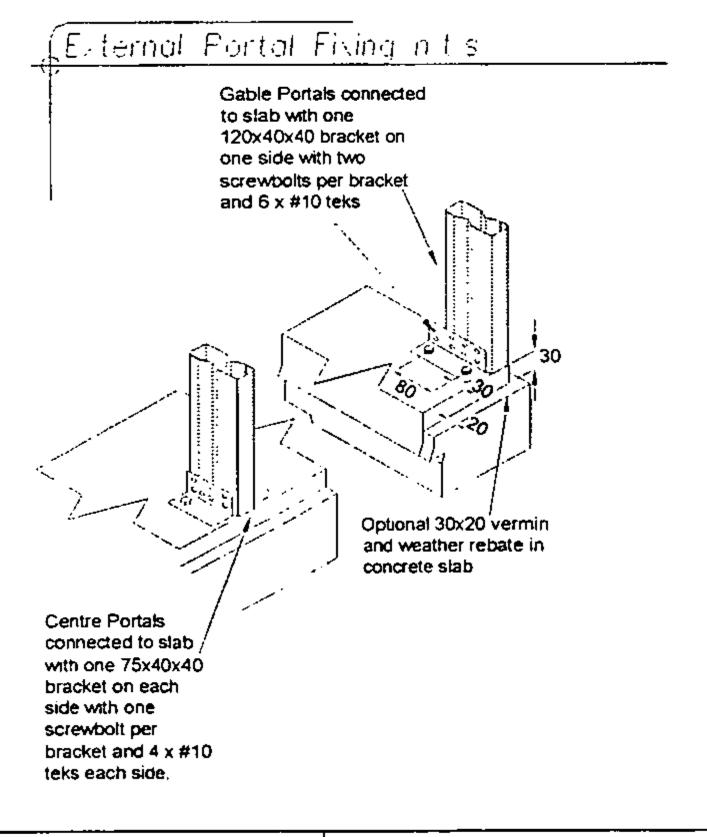

Drawing Title:


SPECIFICATIONS

For: Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth

. W 🏂




75kPa bearing & fill with concrete.

holes to 300mm

Where holes are over 0.75m deep increase diameter of

Note - Door Rebates
Tilt Door Rebates to be 20mm
deep x 70mm Wide.
(Tilt Doors sit in the rebate by
10mm)

NPDC Approved 17 APR 2008

Vermont Consultants
structural consulting engineers
7 Downey Ct
Albany Creek, QLD
Phone +51 7 3264 8409

I certify that buildings erected in accordance with these drawings will comply with the New Zesland Building Code.

Stan Theordore Olech
MengSc, MIEAust (since 1980)
CPEng NPER-3 351935

Smartsleel
A Division of VERSATILE BUILDINGS LTD

112 WATERLOO ROAD, HORNBY
PO BOX 11-013, CHRISTCHURCH
PH: (03) 349 1285 FAX: (03) 349 1286

Drawing Title:

FOUNDATION DETAILS

For: Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth

SLAB PLANS

Notes:

- 1) 6m x 9m Concrete slabs to have construction joints keyed during placing or cut as shown by "Control joint" detail.
- 2) When an unplanned break in concrete placement occurs, use joint detail as shown by "Construction joint" drawing.
- 3) Optional vermin proofing rebates will be added to these sla sizes.

Vermont Consultants structural consulting engineers

7 Downey Ct Albany Creek, QLD Phone +61 7 3264 8409 I certify that buildings erected in accordance with these drawings will comply with the New Zesland Building Code.

Stan Theordore Olech MengSc, MIEAust (since 1980) CPEng NPER-3 351935 Smartslee

A Division of VERSATILE BUILDINGS LTD 112 WATERLOO ROAD, HORNBY P.O. BOX 11-013, CHRISTCHURCH PH: (03) 349 1285 FAX: (03) 349 1286 Drawing Title:

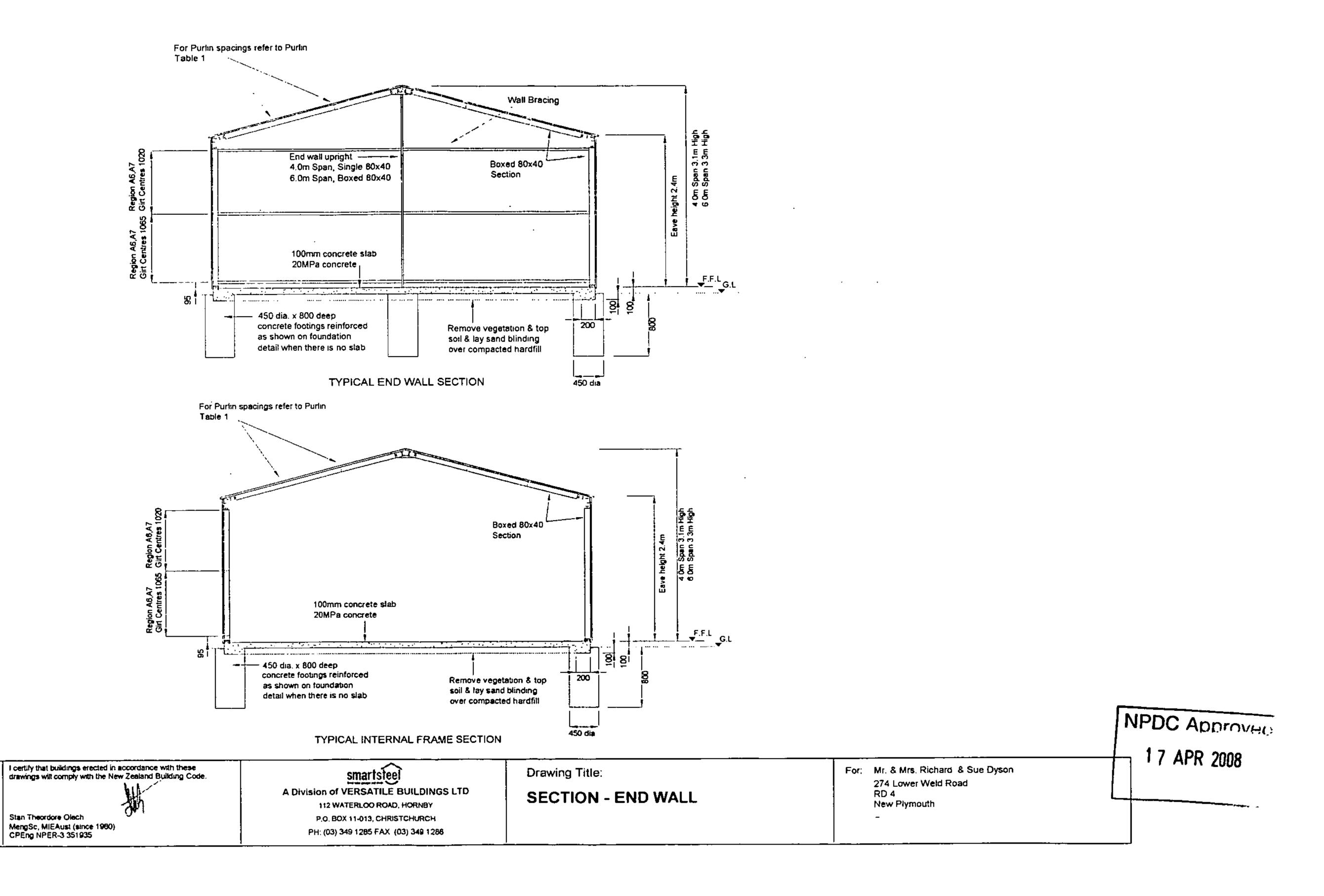
FOUNDATION DETAILS

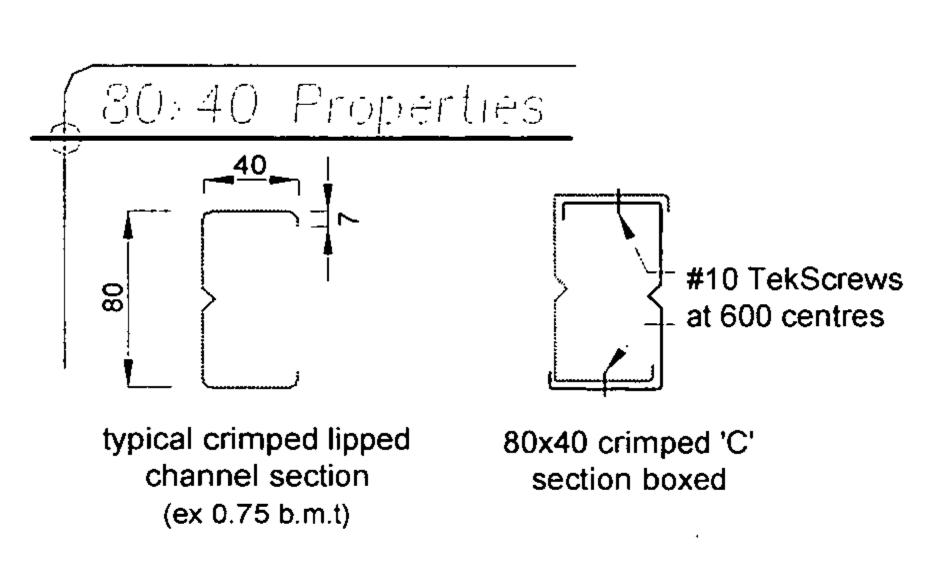
For: Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road

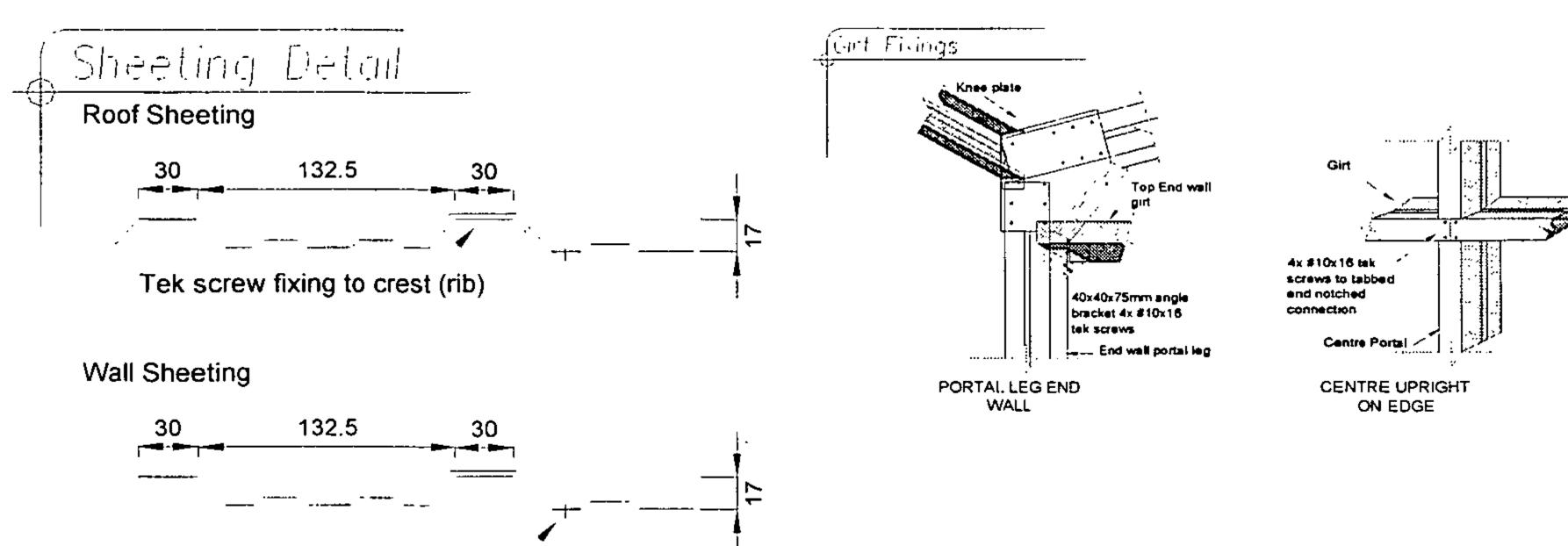
> RD 4 New Plymouth

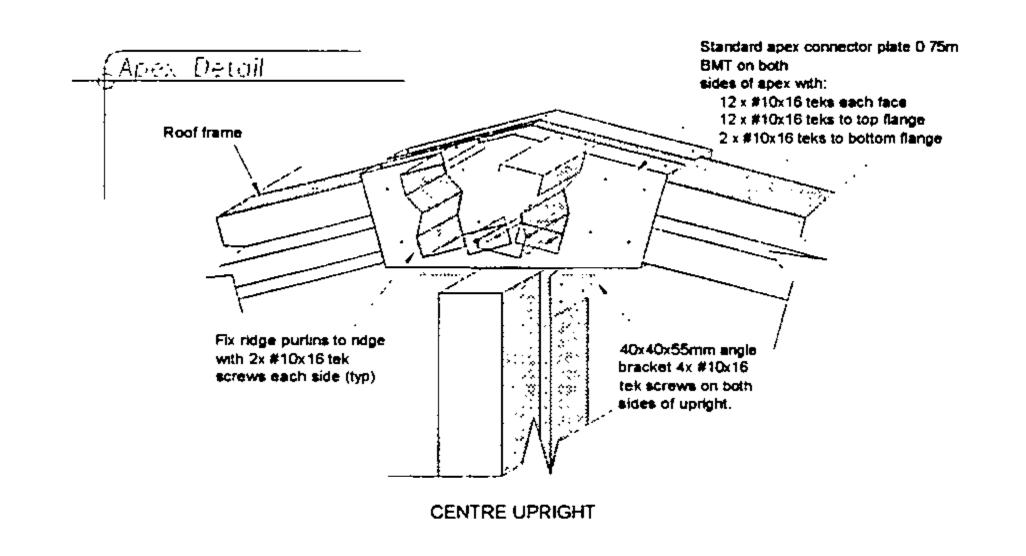
NPDC Approved 17 APR 2008

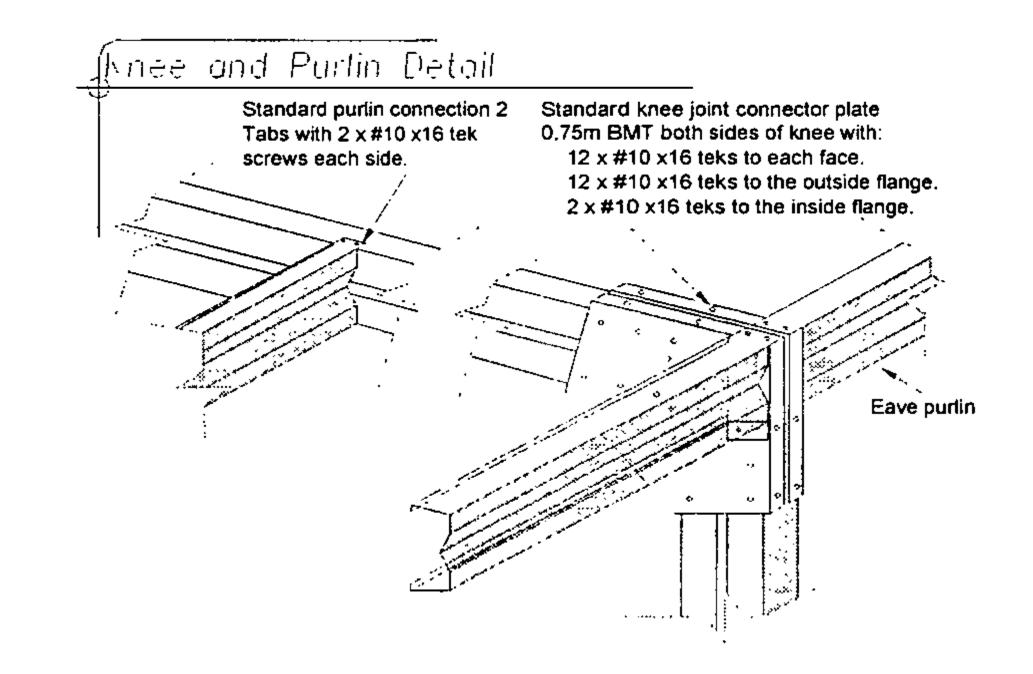
Apex Height (mm): 3300 Wall Height (mm): 2400


Vermont Consultants


structural consulting engineers


7 Downey Ct


Albany Creek, QLD


Phone +61 7 3264 8409

Vermont Consultants
structural consulting engineers
7 Downey Ct
Albany Creek, QLD
Phone +61 7 3264 8409

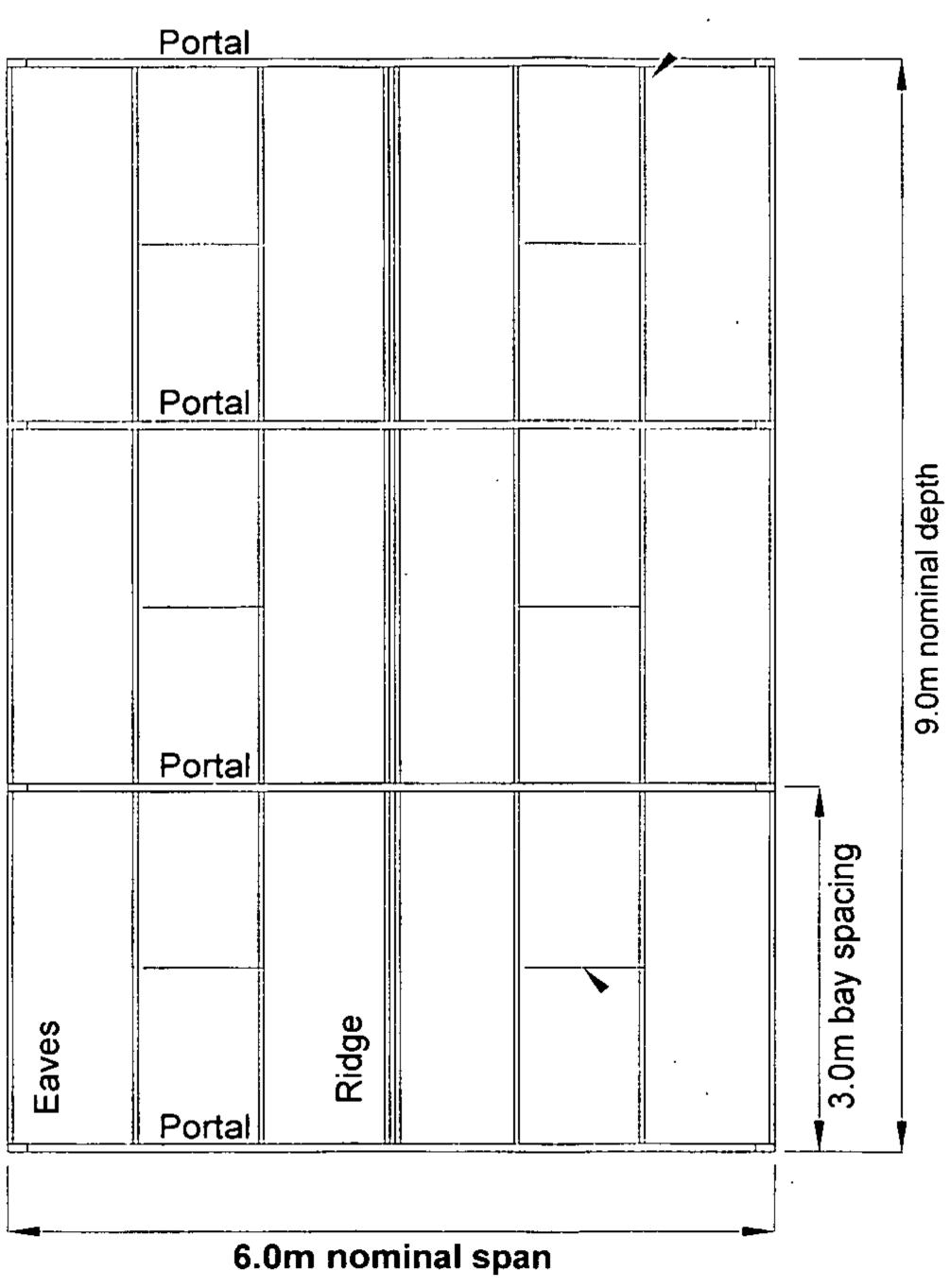
I certify that buildings erected in accordance with these drawings will comply with the New Zealand Building Code.

Stan Theodore Olech

MengSc, MIEAust (since 1980) CPEng NPER-3 351935 Smartsteel
A Division of VERSATILE BUILDINGS LTD
112 WATERLOO ROAD, HORNBY
P.O. BOX 11-013, CHRISTCHURCH
PH: (03) 349 1285 FAX: (03) 349 1286

Drawing Title:

Tek screw fixing to pan


BUILDING DETAILS

For: Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth NPDC Approved 17 APR 2008

Document Set ID: 899816 Version: 1, Version Date: 14/01/2010

. .

Purlins @ 992mm centres

Denotes Bridging

NPDC Approved 17 APR 2008

Vermont Consultants
structural consulting engineers
7 Downey Ct
Alberry Creek, QLD
Phone +61 7 3264 8409

I certify that buildings erected in accordance with these drawings will comply with the New Zealand Building Code.

Stan Theodore Olech MengSc, MiEAust (since 1980) CPEng NPER-3 351935 Smartslee

A Division of VERSATILE BUILDINGS LTD

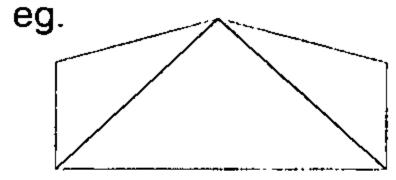
112 WATERLOO ROAD, HORNBY

P.O. BOX 11-013, CHRISTCHURCH

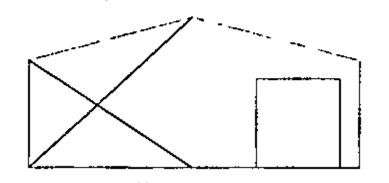
PH: (03) 349 1285 FAX: (03) 349 1286

Drawing Title:
ROOF PLANS

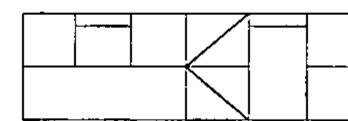
For: Mr. & Mrs Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth


7 Rib roll formed 7 Rib roll formed zinc aluminium aluminium coated ___ _Corner flashing fixed with rivets coated steel on 80x40 C section steel on 80x40 C section — Barge Trim girt purlin Portal section Corner flashing ———to door jamb Portal Leg<u>⋕</u> head flashing to door head End Portal frame Outside Outside weather seal flashing weather seal flashing totalspan P.A. Door **Outside** 7 Rib roll formed 7 Rib roll formed 80x40 C section tab fixed to portal 5 6 totalspan P.A. Door Outside zinc aluminium coated steel on puzinc aluminium coated steel on 80x40 C section 80 x 40 C section end wall frame P.A. Door head Detail P.A. Door Jamb Detail B80x40 section fixed with 55 - bracket to portal as centre upright 80x40 C section fixed to portal girt External corner Barge Detail Outside End of roofing to be bent up to prevent water egress Steel ridging - tek screwed to ribs Aluminium Soft Edge 7 Rib roll formed 7 Rib roll formed zinc aluminium coated steel to roof on optional building paper zinc aluminium coated and roof netting 7 Rib roll formed zinc aluminium coated 80x40 C section 150 C section Door Jamb frame Outside Zinc atuminium coated steel spouting --- A2 head flashing Corner flashing to door jamb Jamb flashing----7 Rib roll formed zinc aluminium coated steel to walls Tilt Door head Detail Tilt Door Jamb Detail 65mm dia pvc downpipes
Brackets at 1200mm spacings 7 Rib roll formed zinc aluminium coated steel on 7 Rib roll formed zinc aluminium coated steel on Opening Aluminium window frame 80x40 C section 80x40 C section jamb flashing to window Head flashing to 7 Rib roll formed zinc aluminium coated window head steel to walls - Sill flashing to window sill Opening Aluminium window frame Aluminium window frame 7 Rib roll formed zinc aluminium coated steel on 80x40 C section Window Sill Detail Window head Detail Window Jamb Detail NPDC Approved 17 APR 2008 i certify that buildings erected in accordance with these drawings will comply with the New Zealand Building Code. <u>smartsteel</u> **Vermont Consultants** Drawing Title: structural consulting engineers A Division of VERSATILE BUILDINGS LTD Flashing Details 7 Downey Ct 112 WATERLOO ROAD, HORNBY Albany Creek, QLD Stan Theodore Olech MengSc, MIEAust (since 1980) CPEng NPER-3 351935 P.O. BOX 11-013, CHRISTCHURCH Phone +61 7 3264 8409 PH: (03) 349 1285 FAX: (03) 349 1288

Document Set ID: 899816 Version: 1, Version Date: 14/01/2010


4 4 🎉

DIMENSIONS IN mm UNLESS STATED. THIS IS A C.A.D. DRAWING AND MUST NOT BE ALTERED BY MANUAL METHODS.


BRACING NOTES:
Braced wall panels can
be relocated as required to
accomodate PA door and
Window openings.

Rear wall with out PA door or window.

Rear wall with PA door or window.

Side Walls - To accommodate PA Door and / or window openings, X bracing can be substituted by K bracing. The width of K bracing shall be minimum of 900mm

All strip bracing shall be 27mm x 0.6mm G550 with a tensioner each run, fix each end with 3 x #10 x 16 teks.

		S45 Front Entry	S45 Front Entry 4.5m Doo	r S45 Side Entry	S45 Side Entry			
	4m x 6m	Portal						
	bm x bm	Portal						
;	m/xma	Portal						
;	ES X EQ	Portal						
erected in ac	cordano	ce with these	Drowing Title:		For: Mr. & Mrs. Richard & Sue Dyson			

Vermont Consultants structural consulting engineers 7 Downey Ct Albany Creek, QLD

Phone +61 7 3264 8409

I certify that buildings erected in accordance with these drawings will comply with the New Zealand Building Code.

Stan Theodore Olech
MengSc, MIEAust (since 1980)
CPEng NPER-3 351935

Smartslee!
A Division of VERSATILE BUILDINGS LTD
112 WATERLOO ROAD, HORNBY
P.O. BOX 11-013, CHRISTCHURCH
PH: (03) 349 1285 FAX: (03) 349 1286

Drawing Title:
BRACING - WALLS AND ROOF

For: Mr. & Mrs. Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth NPDC Approved.

NZ WIND CLASSIFICATION SYSTEM

AS/NZS 1170.2:2002

Region	Terrain	T1		T2		Т3		T4 (Lee only)					
<u>. </u>	category	FS	PS	NS	FS	PS	NS	FS	PS	NS	FS	PS	NS
	TC 3	·											
Α	TC 2.5		LW - HW			LW - HW			LW - HW		LW - HW		
	TC 2												
	TC1	·-		·····			EE MASSES		33 E28524				
	TC 3			· -									- / / / / / / / / / / / / / / / / / / /
W	TC 2.5		LW - HW		LW - HW			LW - HW	SSERIAL TO			TO TOP TO THE	
	TC 2								74.30 July 1				
	TC1		1			44 535	\$275-773 KI		77 77 77 7	1380.61	14 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 (28.5)	T, 252 14

Notes:

1. The classification system is based on AS/NZS 1170.2:2002 and AS 4055-2006 "Wind loads for housing" adopted to NZ wind regions (A6, A7 & W).

2. T1, T2. T4 denotes topographic class and refers to used topographic multiplier Mt. The relations between

T and Mt are as follows:

 $\Gamma 1$ Mt = 1.0 to 1.16

T2 Mt >= 1.16 to 1.25 T3 Mt >= 1.25 to 1.36

T4 Mt >= 1.36 to 1.47

3. FS, PS, NS denotes following shielding multipliers Ms:

FS (full shielding)

Ms = 0.85

PS (partial shielding)

Ms = 0.95

NS (no shielding)

Ms = 1.0

NZ Design wind speed:

Australian equivalent classification:

S35 -Low wind (LW)

LW Vu = < 35 m/s

N1 (34 m/s)

S40 - Medium wind (MW)

MW Vu = 35 to 40 m/s

N2 (40 m/s)

S45 - High wind (HW)

HW Vu = 40 - 45 m/s

(N2+N3)/2 (45 m/s)

S50 -Very high wind (VHW)

VHW Vu = 45 - 50 m/s

N3 (50 m/s)

Vu > 50 m/s

NPDC Approved

Vermont Consultants structural consulting engineers 7 Downey Ct Alberry Creek, QLD

Phone +61 7 3264 8409

I certify that buildings erected in accordance with these drawings will comply with the New Zeatand Building Code.

Stan Theodore Olech MengSc, MIEAust (since 1980) CPEng NPER-3 351935 SMARTSIEE

A Division of VERSATILE BUILDINGS LTD

112 WATERLOO ROAD, HORNBY

P.O. BOX 11-013, CHRISTCHURCH

PH: (03) 349 1285 FAX. (03) 349 1286

Drawing Title:
WIND LOAD DETAILS

For. Mr. & Mrs Richard & Sue Dyson 274 Lower Weld Road RD 4 New Plymouth 1 7 APR 2008

SmartSteel Specifications

Prepared By: Greg or Jim, Taranaki, 06 7514154 Proposed For: Mr. & Mrs. Richard & Sue Dyson

Site Address: 274 Lower Weld Road

Reference: naki-1475

 Date Drawn:
 30/01/2008

 Length:
 8825

 Width:
 5900

 Area:
 52.068m²

 Stud Height:
 2400

 Wind Rating:
 High

 Bay Size:
 3000

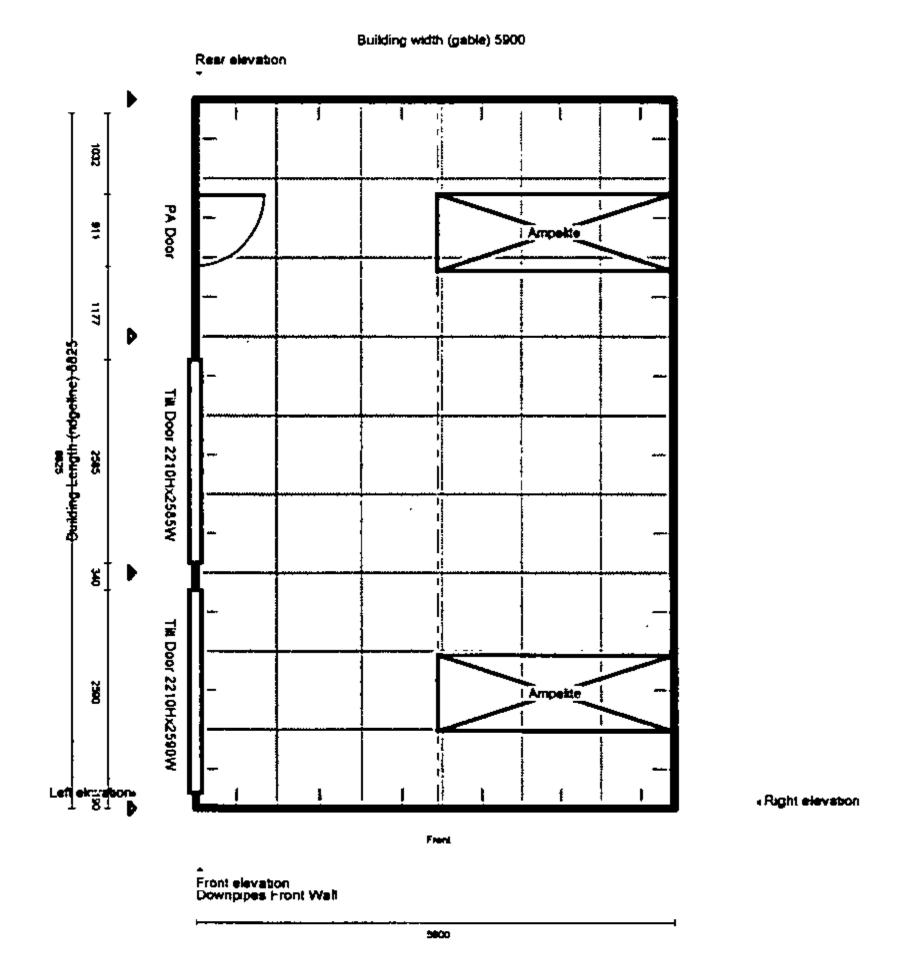
Cladding: 7 Rib Cladding Colour: TBC

Foundation: Concrete Slab

Notes:

The design has been checked in accordance with B1/VM1,B1/VM4, NZS 4203, NZS 3101 and AS/NZS 4600 of the approved documents issued by the Building Industry Authority and the work is described on drawings prepared by Vermont Consultants, Civil & Structural Consulting Engineers.

Durability requirements for wall cladding detailed in Producer Statement-Durability.

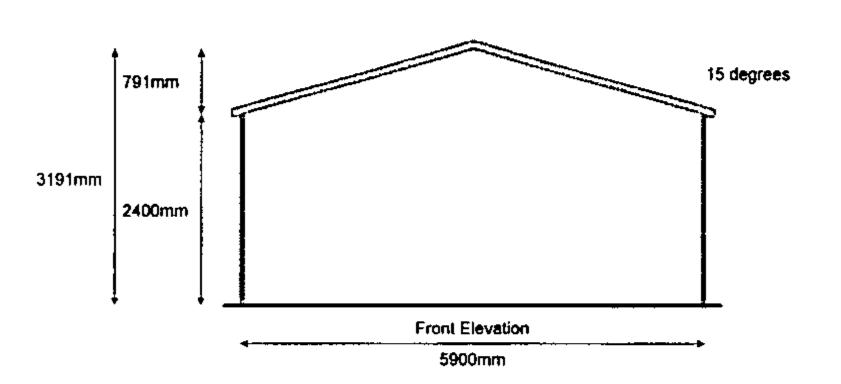

This specification is to be read in conjunction with the attached SmartSteel Specification drawings and Producer Statement by Vermont Consultants, Civil & Structural Consulting Engineers.

Construction to comply with NZS 4203, NZS 3101 and AS/NZS 4600 and the New Zealand Building Code.

NPDC Approved 17 APR 2008 SmartSteel Floor Plan

Prepared By: Greg or Jim, Taranaki, 06 7514154 Proposed For: Mr. & Mrs. Richard & Sue Dyson Site Address: 274 Lower Weld Road

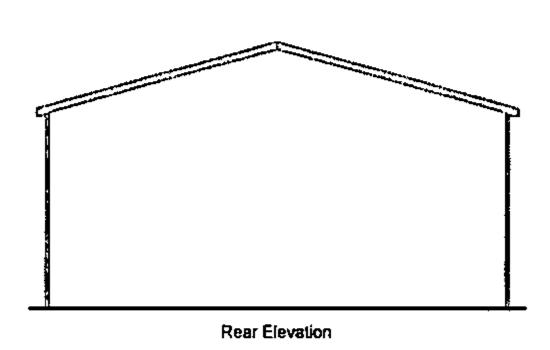
Reference: naki-1475



NPDC App 17 APR 2008

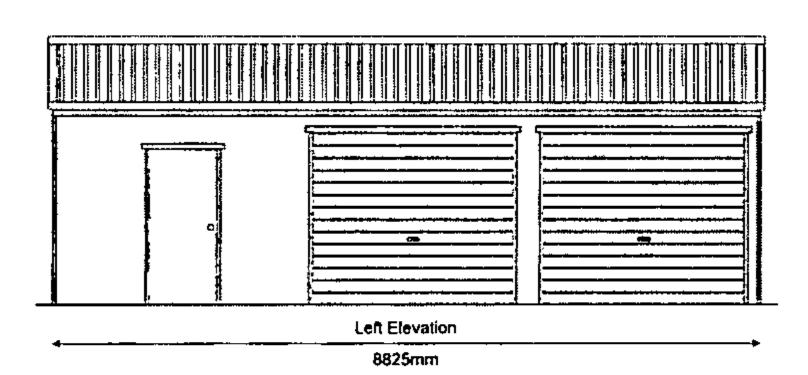
Prepared By: Greg or Jim, Taranaki, 06 7514154
Proposed For: Mr. & Mrs. Richard & Sue Dyson
Site Address: 274 Lower Weld Road

Reference: naki-1475


APR 2008 Approv.

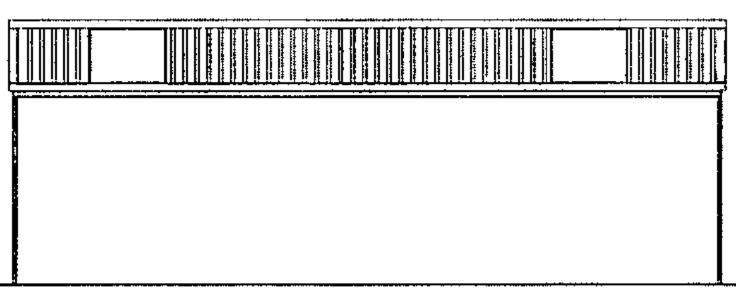
Prepared By: Greg or Jim, Taranaki, 06 7514154
Proposed For: Mr. & Mrs. Richard & Sue Dyson
Site Address: 274 Lower Weld Road

Reference: naki-1475


APR 2008 Approved

Prepared By: Greg or Jim, Taranaki, 06 7514154
Proposed For: Mr. & Mrs. Richard & Sue Dyson
Site Address: 274 Lower Weld Road

Reference: naki-1475


APR 2000 Approve

Prepared By: Greg or Jim, Taranaki, 06 7514154 Proposed For: Mr. & Mrs. Richard & Sue Dyson Site Address: 274 Lower Weld Road

Reference: naki-1475

17 APR 2008

Right Elevation