
@ajaynairthinks

Ajay Nair
Principal Product Manager

Amazon Web Services

Being a good citizen in an event driven world

@ajaynairthinks

“Serverless will
fundamentally
change how we build
business around
technology and how
you code.” -
Geekwire

@ajaynairthinks
 (from “AWS Lambda from the trenches” by Yan Cui)

 TODAY

@ajaynairthinks

 Yubl (from “AWS Lambda from the trenches”) TOMORROW

 (from “AWS Lambda from the trenches” by Yan Cui)

@ajaynairthinks

Web
Applications
• Static websites

• Complex web
apps

Data
Processing
• Real-time data

• Streaming data

• Media content

Chatbots
• Powering

chatbot logic

• Powering
voice-enabled
apps

• Alexa Skills Kit

Backends

• Apps & services

• Mobile

• IoT

</></>

Autonomous
IT
• Policy engines

• Infrastructure
management

USE CASES

Big Data

• MapReduce

• Batch

@ajaynairthinks

EVENT SOURCE
Requests to endpoints
Changes in resource state
Changes in data state

FUNCTIONS/ACTORS

DOWNSTREAM

✓ Communicate
through events and
APIs

✓ Stateless, ephemeral
actors

✓ Separation of logic
from data, cache, and
state

EVENT DRIVEN ARCHITECTURES (GROSSLY
SIMPLIFIED)

@ajaynairthinks

How do I build an effective event source?

@ajaynairthinks

Event delivery concepts

@ajaynairthinks

Event
destinatio

n

Event
router

Event
source

“An event is a signal emitted by a component upon reaching a given state.” – Reactive Manifesto

 Payload Batching
On-success semantics
On-Failure semantics

EVENT DELIVERY CONCEPTS

@ajaynairthinks

Responsible for emitting information
when the event of interest happens.

EVENT DELIVERY CONCEPTS

Event
destinatio

n

Event
router

Event
source

 Payload Batching
On-success semantics
On-Failure semantics

@ajaynairthinks

EVENT DELIVERY CONCEPTS

Event
destinatio

n

Event
router

Event
source

 Payload Batching
On-success semantics
On-Failure semantics

Responsible for getting the event payload
to the desired destination.

@ajaynairthinks

Event source Event router

Controls… Payload
Retention

On-success semantics
Filtering
On-Failure semantics

AWS Examples

EVENT DELIVERY CONCEPTS

Amazon SNS

Amazon S3

CloudWatch events (CRON)

CloudWatch events Rules

Lambda (Event Source
Mappings)

AWS IoT (Gateway)

EC2

Amazon DynamoDB

@ajaynairthinks

DECISION #1 - PAYLOAD

@ajaynairthinks

WHAT SHOULD BE IN THE EVENT?

* Martin Fowler – “What do you mean by “Event-Driven”?” – Feb 2017

Pattern #1 - Event notification pattern*
• Event processor expected to contact event source to do work
• Requires characteristics/identifier – “What can you tell the

event destination about the event source and entity
affected?”

• Baseline - Provenance
• “What happened for this notification to occur?”

@ajaynairthinks

WHAT SHOULD BE IN THE EVENT?

* Martin Fowler – “What do you mean by “Event-Driven”?” – Feb 2017

Pattern #2 - Event-carried state transfer pattern*
• Event processor not expected to contact event source
• Requires payload i.e. state you want to transfer downstream

• Baseline - Provenance
• “What happened for this notification to occur?”

@ajaynairthinks

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-east-1",
 "eventTime":The time, in ISO-8601 format, for example, 1970-01-01T00:00:00.000Z, when S3 finished processing the request,
 "eventName":"event-type",
 "userIdentity":{
 "principalId":"Amazon-customer-ID-of-the-user-who-caused-the-event"
 },
 "requestParameters":{
 "sourceIPAddress":"ip-address-where-request-came-from"
 },
 "responseElements":{
 "x-amz-request-id":"Amazon S3 generated request ID",
 "x-amz-id-2":"Amazon S3 host that processed the request"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"ID found in the bucket notification configuration",
 "bucket":{
 "name":"bucket-name",
 "ownerIdentity":{
 "principalId":"Amazon-customer-ID-of-the-bucket-owner"
 },
 "arn":"bucket-ARN"
 },
 "object":{
 "key":"object-key",
 "size":object-size,
 "eTag":"object eTag",
 "versionId":"object version if bucket is versioning-enabled, otherwise null",
 "sequencer": "a string representation of a hexadecimal value used to determine event sequence,
 only used with PUTs and DELETEs"
 }
 }
 },
]
}

Provenance

Characteristics

EXAMPLE EVENTS
S3

 "Records": [
 {
 "eventID":
"shardId-000000000000:49545115243490985018280067714973144582180062593244200961",
 "eventVersion": "1.0",
 "kinesis": {
 "partitionKey": "partitionKey-3",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0IDEyMy4=",
 "kinesisSchemaVersion": "1.0",
 "sequenceNumber": "49545115243490985018280067714973144582180062593244200961"
 },
 "invokeIdentityArn": identityarn,
 "eventName": "aws:kinesis:record",
 "eventSourceARN": eventsourcearn,
 "eventSource": "aws:kinesis",
 "awsRegion": "us-east-1"
 }
]
}

Payload

IoT data through Kinesis

@ajaynairthinks

DECISION #2 – EVENT
STORE

@ajaynairthinks

OPTIONAL: EVENT STORE

Durability
Events are accessible even if
event source is down

Retention
Events can be revisited until
processed

Cost
Additional storage, data
transfer, and service costs

Complexity
New service dependency,
operational surface area

VS.

Not required if:
- Event source reclaims state (e.g. synchronous invocations)
- Event source has persistent storage (e.g. S3)

@ajaynairthinks

OPTION #1 - STREAMS
Benefits

• Ordered processing on events
• Multiple consumers processing

same event list
• Downsides

• Need to manage sharding and
scaling

• Restricted concurrency
• Complex routing/filtering rules

• Scenarios
• Event sourcing (e.g. replication)
• Aggregations

Entity store

Entities

@ajaynairthinks

OPTION #2 - QUEUES
Benefits

• Concurrent processing on events
• Better scaling/ease of use

• Downsides
• Limited consumers
• Order not guaranteed

• Scenarios
• Idempotent inspections
• Parallel processing (e.g.

MapReduce)

@ajaynairthinks

State transfer
Queue based

Notifications
No event store

State transfer
Stream based

IMPACT ON SCALING/RESILIENCE

@ajaynairthinks

DECISION #3 – ROUTERS

@ajaynairthinks

Event source Event router

Controls… Payload
Retention

On-success semantics
Filtering
On-Failure semantics

AWS Examples

RECAP: EVENT ROUTERS

Amazon SNS

Amazon S3

CloudWatch events (CRON)

CloudWatch events Rules

Lambda (Event Source
Mappings)

AWS IoT (Gateway)

EC2

Amazon DynamoDB

@ajaynairthinks

Must have
• Pub/sub: Securely map arbitrary

sources/stores and destinations
• Conditionals: Ability to discard

uninteresting events
• E.g. S3 prefix filters

• On-failure hooks: Specific
behavior if events are
unprocessed

• E.g. Lambda retries and Dead
Letter Queues

Ideal
• Bidirectional discovery:

Discovery/registry for all
available sources/stores and
destinations

• Combinations: allows joins
merges between multiple event
sources

• Multiplexing: many-to-many
combinations of sources and
destinations

EVENT ROUTER CHARACTERISTICS

@ajaynairthinks

BRINGING IT ALL TOGETHER
Entity store

Entities

SNS event
consumer

@ajaynairthinks

1.Be smart about what goes into your
payload.

2.Surface an event store when appropriate.

3.Reuse standard routers where possible.

RECAP

@ajaynairthinks

Supercharge the
event driven and
serverless journey
for you and your
customers.

@ajaynairthinks

Thank you!

