
Imagining Contract-Based Testing
for

Event-driven Architectures
Dave Copeland

Director of Engineering
Stitch Fix

@davetron5000

What Problem Are We Solving?

• Systems communicate to facilitate a process

• We need to know if that works

• We need to know if our changes will break it

• We need to know that without a bunch of manual clicking

Hi!

• I’m Dave Copeland, Director of Engineering @ Stitch Fix

• We are a personal styling service

• eCommerce-like business model

• All internal operations are via applications and services the engineering
team writes.

• Lots of HTTP, but lots more messages (in our case, RabbitMQ)

Example Problem
Packing Slip

Order ID

Items

Charging &
Discount
Logic

WMS

Order ID

Financial
Transactions

Inventory
Metadata

1
2

3

pack
slip

4

Cache

5

WMS

Order ID

Financial
Transactions

Inventory
Metadata

1
2

3

pack
slip4

Merchandise Engineering

Finan
ce En

gineer
ing

Warehouse Engineering

Team

Warehouse Operations Styling Merchandising

Consumer Finance Customer Service

dedicated
engineering

team

dedicated
engineering

team

dedicated
engineering

team

dedicated
engineering

team

dedicated
engineering

team

dedicated
engineering

team

Consumer-Driven Contracts

WMS

Order ID

Financial
Transactions

Inventory
Metadata

pack
slip

Test

Test

Finan
ce En

gineer
ing

Warehouse Engineering

The great thing about synchronous services…

• You know at deploy/test/CI-time who calls what

• You could codify that as contracts

• If all contracts are satisfied, end-to-end behavior is still good.

WMS

Styling App

Inventory
Metadata

1

pack
slip

Rabbit

Cache

Merch App

Item 1234’s description changed

Item 4567’s Price Updated

Item 9876 added to order 765

2

3

4

1

1

Financial
Transactions

How might this work?

WMS

Styling App

Test

Test

Guarantee

Expectation

Guarantees

• Payload schema

• Metadata guarantees:

• routing key

• headers/metadata

• Some sort of identifier - “what guarantee might I expect?”

Expectations

• Id of the guarantee that is expecrted

• Schema that the payload must conform to

• Metadata expectations

• Ability to feed into several different test cases

Safe Consumer Changes

Central Authority

Guarantee
Definition

Producer Test
Framework

Consumer Test
Framework

Consumer Knows
if it’s been broken 👍

Safe Producer Changes

Central Authority

Guarantee
Definition

Producer Test
Framework

Consumer Test
Framework

Producer Knows It’s
broken someone 👍

Failures

CONSUMER

No Guarantee Exists Code Might Never
Execute

Guarantee Exists, my
Test Fails

Consumer Fails in
Production

PRODUCER
Expectation Exists,
my Schema/Examples
Aren’t compatible

Consumer Fails in
Production

Side Benefits

• Listens for messages in production

• Anything with no guarantee → alert/notify

• Guarantees for messages not sent after X days → alert/notify

• Could document actual realtime dependencies!

• Understanding implementation of a business process becomes easier!

Verification Hand-waving 👋
• Guarantee is a Schema

• Expectation is a Schema

• Isn’t this just “check that everyone’s schemas are the same?”

• Not necessarily:

• Enforcing equivalence is tight coupling we want to avoid

• Guarantee must subsume the Expectation

Subsume Example
Guarantee Schema

• Our consumer just needs item_id and new_price

{  
 "namespace": "item_events",  
 "type": "record",  
 "name": "ItemPriceChange",  
 "fields": [ 
 {"name": "item_id", "type": "string" },  
 {"name": "old_price", "type": "int" },  
 {"name": "new_price", "type": "int" }  
]  
}

Subsume Example
Expected Schema

• The guarantee schema subsumes this one—there’s nothing here we aren’t
getting from the producer

{  
 "namespace": "item_events",  
 "type": "record",  
 "name": "ItemPriceChange",  
 "fields": [ 
 {"name": "item_id", "type": "string" },  
 {"name": "old_price", "type": "int" }  
]  
}

Subsume Example
Guarantee Schema Changes

• Consumers don't care about user_id, so this still subsumes consumer’s
schema.

{  
 "namespace": "item_events",  
 "type": "record",  
 "name": "ItemPriceChange",  
 "fields": [ 
 {"name": "item_id", "type": "string" },  
 {"name": "old_price", "type": "int" },  
 {"name": "new_price", "type": "int" },  
 {"name": "user_id", "type": "int" }  
]  
}

Subsume Example
Guarantee Schema Changes

• Consumers rely on new_price, so this no longer subsumes their
schema’s

{  
 "namespace": "item_events",  
 "type": "record",  
 "name": "ItemPriceChange",  
 "fields": [ 
 {"name": "item_id", "type": "string" },  
 {"name": "old_price", "type": "int" },  
 {"name": "updated_price", "type": "int" },  
]  
}

Subsume Example
New Expected Schema

• The guarantee schema no longer subsumes this one!

{  
 "namespace": "item_events",  
 "type": "record",  
 "name": "ItemPriceChange",  
 "fields": [ 
 {"name": "item_id", "type": "string" },  
 {"name": "old_price", "type": "int" },  
 {"name": "reason", "type": "string" }  
]  
}

Confounders

• Schemas are complex - can we programmatically check subsumption?

• How to uniquely identify guarantees w/out coupling?

• styling_app_changes_order_items BAD

• changes_order_items TOO GENERIC?

• Easily actually writing and managing these tests

• Oh, and actually building this :)

Me + ✈ +

ItemPriceUpdater PriceCache

PackSlipUpdater

item_price_update

{
 :item => {
 :id => 8387,
 :new_price => "70.12",
 :old_price => "5.38"
 }
}

ItemPricerUpdater Spec
before do
 updater.update(item,new_price)
end

it "should update the item's price" do
 expect(item.price).to eq(new_price)
end

it "should send a message about it" do
 expect(Pwwka::Transmitter).to have_sent_message(
 matching_schema: :item_price_change,
 identified_by: :price_change,
 payload_including: {
 item: {
 id: item.id,
 new_price: new_price,
 old_price: original_price,
 }
 },
 on_routing_key: "sf.item_price_change"
)
end

ItemPricerUpdater Spec
expect(Pwwka::Transmitter).to have_sent_message(
 matching_schema: :item_price_change,
 identified_by: :price_change,
 payload_including: {
 item: {
 id: item.id,
 new_price: new_price,
 old_price: original_price,
 }
)

ItemPricerUpdater Schema
{
 "type": "object",
 "required": ["item"],
 "properties": {
 "item": {
 "type": "object",
 "required": ["id", "new_price", "old_price"],
 "properties": {
 "id": {"type": "integer"},
 "new_price": {"type": "string"},
 "old_price": {"type": "string"}
 }
 }
 }
}

ItemPricerUpdater Guarantee
{
 "id": "price_change",
 "schema": {
 "type": "object",
 "required": ["item"],
 "properties": {
 "item": {
 "type": "object",
 "required": ["id", "new_price", "old_price"],
 "properties": {
 "id": { "type": "integer" },
 "new_price": { "type": "string" },
 "old_price": { "type": "string" }
 }
 }
 }
 },
 "metadata": {
 "routing_key": "sf.item_price_change"
 },
 "example_payload": {
 "item": {
 "id": 1,
 "new_price": "34.45",
 "old_price": "12.34"
 }
 }
}

PriceCache Spec
it "updates the cache with the new price" do
 payload = receive_message(
 guaranteed_by: :price_change,
 expected_schema: :price_cache_price_change,
 app_name: "financial_data_warehouse",
 use_case: "cache_price")

 cached_item = PriceCacheHandler.cache[payload["item"]
["id"]]

 expect(cached_item).to eq(payload["item"]["new_price"])
end

Finds the guarantee with this ID

Make sure it matches MY schema

Publish my expectation if all goes well

ItemPricerUpdater Guarantee
{
 "app_name": "wms",
 "use_case": "pack_slip_exists",
 "guarantee_id": "price_change",
 "schema": {
 "type": "object",
 "required": ["item"],
 "properties": {
 "item": {
 "type": "object",
 "required": ["id", "new_price"],
 "properties": {
 "id": { "type": "integer" },
 "new_price": { "type": "string" }
 }
 }
 }
 },
 "example_payload": {
 "item": {
 "id": 1234,
 "new_price": "34.12"
 }
 }
}

PackSlip Spec
receive_message(
 guaranteed_by: :price_change,
 expected_schema: :pack_slip_new_price,
 app_name: "wms",
 use_case: "pack_slip_exists",
 override_sample: {
 "item" => { "id" => item_id, "new_price" => price }
 }
)

Override the published sample
(checks the overridden payload against schemas)

It Works!

It Works!

Let’s Break Something
{
 "app_name": "wms",
 "use_case": "pack_slip_exists",
 "guarantee_id": "price_change",
 "schema": {
 "type": "object",
 "required": ["item"],
 "properties": {
 "item": {
 "type": "object",
 "required": ["id", "reason", "new_price"],
 "properties": {
 "id": { "type": "integer" },
 "reason": { "type": "string" },
 "new_price": { "type": "string" }
 }
 }
 }
 },
 "example_payload": {
 "item": {
 "id": 1234,
 "new_price": "34.12",
 "reason": "markdown"

It Catches It!

How Real is This?

• The code is on GitHub: https://github.com/davetron5000/event_lawyer

• It’s in Ruby (sorry not sorry)

• I think this has potential as a concept!

https://github.com/davetron5000/event_lawyer

Thanks!!
Dave Copeland

@davetron5000

Get a job: http://multithreaded.stitchfix.com/careers/

Read my blog: http://naildrivin5.com

http://multithreaded.stitchfix.com/careers/
http://naildrivin5.com

