Imagining Contract-Based Testing
for
Event-driven Architectures

Dave Copeland
Director of Engineering
Stitch Fix
@davetronb5000

What Problem Are We Solving?

Systems communicate to facilitate a process
 \We need to know if that works
* \We need to know if our changes will break it

* \We need to know that without a bunch of manual clicking

Hi!

I’m Dave Copeland, Director of Engineering @ Stitch Fix
We are a personal styling service
eCommerce-like business model

All internal operations are via applications and services the engineering
team writes.

Lots of HTTP, but lots more messages (in our case, RabbitMQ)

Example Problem
Packing Slip

emilysteinanderson(@gmail.com

Hi Emily,

Thanks for letting us style Fix #3 for you. We hope you love it.

Items handpicked for you by Arielle

367-A Burgundy M Willow & Clay $88.00

194-367 Seurat Folka Dot Crew-Neck Sweater

659-A Black M LA MACE $48.00

210.659 Jemma Dot-Trimmed Tie-Waist Cardigan

912-A Blue M Splendid $84.00

241-912 ~ouisa Striped Teb-Seeve Knit Shirt

969-A Black M Tart $48.00

215-969 Rayment Hi-Lo Peplum Knit "op

092-A Navy 4 Miss Me $48.00

206-082 Deena Rhinestone Button Denimr

Don't lose your styling fee! Subtotal +316.00

It will be credited towards Buy S discount: 25%" -$75.00

any items you keep in this Fix. Styling fee: purchase credit -$20.00
Total $217.00

* You must purchase all five tems toreceivea 25%
discount. Notz: Additional Sales Tex may apply

e ———temmmeSEETTTT

emilysteinanderson@gmail.com

Hi Emily,

Thanks for letting us style Fix #3 for you. We hope you love it.

Ordr ip

ltems handpicked for you by Arielle

367-A Burgundy m Willow & Clay $88.00

194347 Seurat FPolka Dot Crew-Neck Sweater

659-A Black M LA MADE $48.00

210-659 Jermma Dot-Trimmed Tie-Waist Cardigan

912-A Blue M Splendid $84.00 "

241-512 Louisa Striped Tab-Sleave Knit Shirt I%Qm s

969-A Clack w Tart $48.00

215-9/8G Rayment Hi-Lo Peplum Knit Top

092-A Navy 4 Miss Me $48.00

209-052 Deena Rhinestone Butten Denim

Don't lose your styling fee! Subtotal $316.00 &

It will be credited towards Buy 5 discount: 25% $7900 N L: k&\" an \ &
L]

any items you keep in this Fix. Styling fee: purchase crecit $20.00 9 9 :

. o
Total $217.00 ‘B LSO LA
* You must purchase all five items to receive a 25%
ciscount. Note: Additional Sales Tax may apply L Edﬂ

e R

Inventory
Metadata

Order ID T

Financial
Transactions

Order ID T

Team

Warehouse Operations Styling Merchandising

dedicated
engineering
team

dedicated dedicated
engineering engineering
team team

Consumer Finance Customer Service

dedicated
engineering
team

dedicated dedicated
engineering engineering
team team

Consumer-Driven Contracts

Order ID

The great thing about synchronous services...

Mcerchadising Warchousc Opcrations
Yamps Vign Clyile Groszer
J— — — — —— — —
CS ’.’_,,’-’ // Coﬁ'sum'f\ s -~ Styling \ l l \\\
=
_ | Kingmwob |_ | _ . Hellblazer MoebileService I Gregory StylingFeeSzarvice Maddie I AdminAuth Nocthsta Minx POM Veundor Rolo Fashionthing Scheduling Thor [uk Pinky I RivService I PickingSeivice Blinky Specue
— ——— 1= =
-] -~ -
— -~ _— A -~ B e | - ! ™~ ! -~ it | . - ~ — =
— o | et e ~. — / e . \ / -~ . \ | . -~ A = 9077"’ ;oo
> o — ,—F’- —_— — e . U 4‘:-\ - ——— # e \ - e Nt L —— -~ /
~ - == Y Sy e Y & * is_-\ b e — Y » — i 2 = - | 4
I . ™ I { I e 1
"’) -)) / o) o .))) i)))) e e)) i A) —) i
| I Truancy Service LxchangeService Y, ShipmentCheckoul I I'ixService ChentService SurvevService I AdmnUser I StylistAssignment SivieService I liemService I InvLocService I Shippinzlabels Camerdervice
. = ‘ { yl = =
T — ’ e ——T
Finu —

T Aundito
=

Checkont

* You know at deploy/test/Cl-time who calls what

* You could codify that as contracts

* If all contracts are satisfied, end-to-end behavior is still good.

Merch App

e e S — 7

123 d&s«cm&om ﬁkav\ge Ai‘

Rabbit

How might this work?

Expectation

Styling App

Gruarantee

(Guarantees

 Payload schema
 Metadata guarantees:
e routing key
* headers/metadata

 Some sort of identifier - “what guarantee might | expect?”

Expectations

ld of the guarantee that is expecrted
Schema that the payload must conform to
Metadata expectations

ADblility to feed into several different test cases

Safe Consumer Changes

Central Authority

Safe Producer Changes

Fallures

CONSUMER

PRODUCER

No Guarantee Exists

Code Might Never
Execute

Guarantee Exists, my
Test Fails

Expectation EXxists,
my Schema/Examples
Aren’t compatible

Consumer Fails in
Production

Consumer Fails in
Production

Side Benefits

Listens for messages in production

Anything with no guarantee — alert/notify

Guarantees for messages not sent after X days — alert/notify
Could document actual realtime dependencies!

 Understanding implementation of a business process becomes easier!

N \\\

Verification Hand-waving «

Guarantee is a Schema

Expectation is a Schema

Isn’t this just “check that everyone’s schemas are the same?”
Not necessarily:

 Enforcing equivalence is tight coupling we want to avoid

 Guarantee must subsume the Expectation

Subsume Example
Guarantee Schema

"namespace’: "item events',
"type": "record",

"name": "ItemPriceChange’,
"fields": [

{"name"”: "item id", "type'": "string" },
{"name"”: "old price"”, "type": "int" },
{"name"”": "new price"”, "type": "int" }
]
}

e QOur consumer just needs item id and new price

Subsume Example
Expected Schema

"namespace”: "item events"”,
"type": "record",
"name": "ItemPriceChange’,

"fields": [
{"name": "item id", "type": "string" },
{"name"”: "old price"”, "type": "int" }
]
}

 The guarantee schema subsumes this one—there’s nothing here we aren’t
getting from the producer

Subsume Example
Guarantee Schema Changes

"namespace”: "item events",
"type": "record",

"name": "ItemPriceChange’,
"fields": [

{"name"”: "item id", "type": "string" },
{"name”": "old price”, "type': "int" },
{"name"”": "new price”, "type": "int" },
{"name"”": "user id", "type": "int" }
]
}

 Consumers don't care about user id, so this still subsumes consumer’s
schema.

Subsume Example
Guarantee Schema Changes

"namespace’: "item events',
"type": "record",

"name": "ItemPriceChange',
"fields": [

{"name"”: "item id", "type'": "string" },
{"name"”: "old price"”, "type": "int" },
{"name": "updated price", "type": "int" },
]
}

 Consumers rely on new price, so this no longer subsumes their
schema’s

Subsume Example
New Expected Schema

"namespace”: "item events"”,
"type": "record",

"name": "ItemPriceChange’,
"fields": [

{"name"”: "item id", "type": "string" },
{"name”": "old price”, "type': "int" },
{"name": "reason', "type": "string" }
]
}

* The guarantee schema no longer subsumes this one!

Confounders

Schemas are complex - can we programmatically check subsumption?

How to uniquely identify guarantees w/out coupling?
 styling app changes order items BAD

* changes order items TO0 GENERIC?
Easily actually writing and managing these tests

Oh, and actually building this :)

ItemPriceUpdater N\ PriceCache

PackSlipUpdater

ItemPricerUpdater Spec

before do
updater.update(item,new price)
end

it "should update the item's price" do
expect(item.price).to eq(new price)
end

i1t "should send a message about it" do
expect (Pwwka: :Transmitter).to have sent message(
matching schema: :item price_ change,
identified by: :price_change,
payload including: {
item: {

id: item.id,

new _price: new price,

old price: original price,

}
}

on_routing key: "sf.item price change”

)

end

ItemPricerUpdater Spec

qexpect(waka: :Transmitter).to have sent message(
matching schema: :item price change, k
identified by: :price change,
q payload including: ({
item: {
id: item.1id,
new price: new price,
old price: original price,

TtemPricerUpdater Schema
{

"type": "object’,
"required'": ["item"],
"properties’: {
"item": {
"type": "object’,
"required': ["1d", "new price"’, "old price"],
"properties’: {
"id": {"type': "integer'"},
"new price’': {"type’': "string'},
"old price": {"'type’: "string"}
}
}
}

ITtemPricerUpdater Guarantee

{

"id": "price change",

"type": "object”,
"required": ["item"],
"properties”: {
"item": {
"type": "object”,
"required": ["id", "new price", "old price"”

"properties”": {
"id": { "type": "integer" },
"new price": { "type": "string"
"old price": { "type": "string"

"metadata”: {
"routing key": "sf.item price change”

"example payload": {
"item": {
"id": 1,
"new price": "34.45",

"old price": "12.34"

PriceCache Spec

1t "updates the cache with the new price” dno
payload = receive message(& e Finds the quarantee with this ID
guaranteed by: :price change,
expected_schema: :price_cache_price change,

app_name: "financial_ data_warehousst
use_case: "cache pHj

Malkee sure ik makbches MY schema

cached item = PriceCachdHandler.cache[payload["item"]

["1d"]] Publish Yy expea&a&m i all qoes well

expect (cached i1item).to eg(payload["item"]["new price"])
end

ITtemPricerUpdater Guarantee

"app name": "wms",

"guarantee id": "price change",

"type": "object”,
"required": ["item"],
"properties”: {

"item": {

"type": "object’,
"required": ["id", "new price"],
"properties”": {

"id": { "type": "integer"" },

"new price": { "type": "string" }

}

"example payload"”: {
"item": {
"id": 1234,

"new price": "34.12"

}

PackSlip Spec

receive message (
guaranteed by: :price change,
expected schema: :pack slip new price,
app name: "wms ',
use case: 'pack slip exists',

override sample: {
"item" => { "id" => item i1d, "new price" => price }

}

Override the F?bi.isheci samgi&
(checkes the overridden payload against schemas)

It Works!

~/Projects/StitchFix/event-lLawyer>

It Works!

~/Projects/StitchFix/event-Lawyer>

Let’s Break Something

"app name": "wms",
"use case'’: "pack slip exists’,
"guarantee_id": "price change"”,
"schema": ({

"type": "object”,

"required": ["item"],

"properties”: {

"item": {

"type": "object"”,
"required": ["id", "new _price"],

"properties”: {

"reason": { "type": "string" },

}
}
}
}
} s
"example payload"”: {
"item": {
"id": 1234,

"new price": "34.12",

N Y Y Q7L v lr A AT TN

|t Catches It'

~/Projects/StitchFix/event-Llawyer> | ake

How Real is This?

 The code is on GitHub: https://qgithub.com/davetron5000/event lawyer

e |t’s in Ruby (sorry not sorry)

e | think this has potential as a concept!

https://github.com/davetron5000/event_lawyer

Thanks!!

Dave Copeland
@davetron5000

Get a job: http://multithreaded.stitchfix.com/careers/

Read my blog: http://naildrivin5.com

http://multithreaded.stitchfix.com/careers/
http://naildrivin5.com

