
Death Stars &
River Deltas

Toward a Functional Programming Analogy for
Microservices

Hi, I’m Bobby

I’m on the Technology Fellows team at

I dislike accidental complexity

bobby.calderwood@capitalone.com
@bobbycalderwood
https://github.com/bobby

mailto:bobby.calderwood@capitalone.com?subject=
https://github.com/bobby

Disclaimers

• What follows is not a rigorous attempt to extend the
formal models of OO and FP to the distributed case

• Rather, it is an informal extension of basic intuition
and principles

• Plus I’m intentionally trolling a little, relax :-)

Microservices!

• Adopt!

• Abandon!

• Assumptions…

AWS Death Star diagram, circa 2008 as per Werner Vogels tweet https://twitter.com/Werner/status/741673514567143424

Object-Oriented
• Encapsulated data access via synchronous calls

• Mutable state change via synchronous calls

• Dependency web

• Imperative, sequence-oriented orchestration

• Referentially opaque

Functional Programming
• Data access via ubiquitous access to immutable

values

• State change via mapping an identity to different
immutable values over time

• Data Flow graph

• Declarative orchestration

• Referential transparency

Contrasting Principles
Object Oriented Functional

Data Access Encapsulated Ubiquitous

State Change Mutable, in-place Immutable, values over
time

Organization Dependency graph Data-flow graph

Orchestration Imperative, sequential Declarative, parallelizable

Referentially… Opaque Transparent

Object-Oriented

• Might be fine within single memory space (let’s
talk…)

• Does not scale well to distributed case!

Distributed Objects
• Latency grows with depth of dependency graph

• Temporal liveness coupling

• Synchronous, pull-oriented by default

• Cascading failure modes

• Inconsistent, imperative orchestration

• Hidden narrative: can only see the nouns, verbs ephemeral

• Complexity: how to reason about state of system at any point in
time?

Source: NASA, Public Domain

Deltas and Lambdas

• OO : Death Star :: FP : River Delta

• Functional Programming analogy scales well to the
distributed case!

Distributed Functions
• Low latency at both read and write time (with eventual

consistency in between)

• Temporal de-coupling

• Isolated failure modes

• (Eventually) consistent, declarative orchestration

• Reified narrative: event stream

• Clear reasoning about (and replay of!) state over time

Example: Balance
Calculation

• Customer-defined weekly spending limits/
notifications on a particular account

• Aggregate the debits, possibly emit event when
balance exceeds limit for time period

• React to event in customer-defined way (prevent
additional transactions until end of period, send
notification, etc.)

• Allow customer to see transactions and balances

OO-Analogy µServices

FP-Analogy µServices

But how?

• Architecture informed by

• Techniques

• Rules

• Tools

FP-Analogy µServices

Techniques
• REST (at the edge)

• CQRS

• Event Sourcing (storage)

• Pub/Sub (conveyance)

• Sagas

• Serverless

Rules
1. Capture all observations and changes at the edge

(carefully!) to an immutable event stream

2. Reactively calculate streams of derived state from
the event stream

3. Aggregate state wherever and however it provides
value

4. Manage outgoing reactions (“side-effects”) to
state and events carefully

Capture changes at the edge
to immutable event stream

• A (very) few authorized teams capture all raw observations
(Events) and customer requests for action (Commands)

• at the edge of bounded context

• with minimal processing

• immutably and durably

• Causally related events go on same log

• One (logical) writer per command/event stream

• No change gets into bounded context via any other means!

Capture changes at the edge
to immutable event stream

Reactively calculate derived
state from the event log

• A few authorized teams process Commands into Events
(probably using aggregate state)

• A few (more) authorized teams calculate state streams
of general interest derived from Events

• Single-entity state changes

• Regulated or audited calculations

• Could be recursive, i.e. certain state changes might
trigger further events downstream

Reactively calculate derived
state from the event log

Aggregate state wherever
and however it provides value
• Many teams across orgs aggregate streams into views for their

respective use-cases

• Into whatever data store makes sense for required data
access pattern

• Possibly emitting views back onto streams (a la Kafka
Streams’ KTable)

• Facilitates stateful computations: joins, windowed aggregates,
command processing

• Everyone traces lineage all the way back to edge Command/
Event

Aggregate state wherever
and however it provides value

Manage “side-effects”
carefully

• A few authorized teams react to Events by reaching outside of
bounded context to cause “side-effects”

• A “side-effect” in this case is any action not associated with
reading or writing the streams or aggregates, e.g.

• Sending email, text message

• Making a call to an outside web service

• Calling a service to write a command/event to a stream you don’t
own

• Log results of attempt to stream to facilitate retry, Saga/rollback/
compensating action

Tools
• Kafka

• Kafka Streams

• Kafka Connect

• Various data stores

• Serverless integrations (e.g. OpenWhisk Kafka
package)

Example

Questions?

References
• Sagas: https://www.cs.cornell.edu/andru/cs711/2002fa/reading/

sagas.pdf

• Ben Stopford on Events/Microservices: https://www.confluent.io/blog/
build-services-backbone-events/

• Rich Hickey:

• Clojure’s approach to state: https://clojure.org/about/state

• The Value of Values: https://www.infoq.com/presentations/Value-
Values

• The Language of the System: https://www.youtube.com/watch?
v=ROor6_NGIWU

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf
https://www.confluent.io/blog/build-services-backbone-events/
https://www.confluent.io/blog/build-services-backbone-events/
https://www.confluent.io/blog/build-services-backbone-events/
https://www.confluent.io/blog/build-services-backbone-events/
https://www.confluent.io/blog/build-services-backbone-events/
https://www.confluent.io/blog/build-services-backbone-events/
https://clojure.org/about/state
https://clojure.org/about/state
https://www.infoq.com/presentations/Value-Values
https://www.infoq.com/presentations/Value-Values
https://www.infoq.com/presentations/Value-Values
https://www.infoq.com/presentations/Value-Values
https://www.infoq.com/presentations/Value-Values
https://www.infoq.com/presentations/Value-Values
https://www.youtube.com/watch?v=ROor6_NGIWU
https://www.youtube.com/watch?v=ROor6_NGIWU
https://www.youtube.com/watch?v=ROor6_NGIWU
https://www.youtube.com/watch?v=ROor6_NGIWU
https://www.youtube.com/watch?v=ROor6_NGIWU

