RCEM 2019: ANALYZING TOPOGRAPHIC TIMESERIES


GEOMORPHIC CHANGE DETECTION

gcd.riverscapes.xyz

Philip Bailey, James Brasington and Joe Wheaton

WHO ARE THESE GUYS?

Philip Bailey

Principal, North Arrow Research

- Geospatial software architect
- philip@northarrowresearch.com

James Brasington

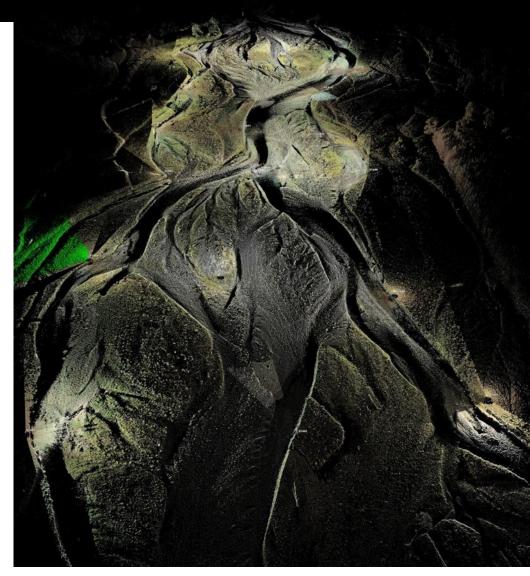
Chair of River Science, University of Waikato

- Fluvial Geomorphology and Remote Sensing
- James.Brasington@waikato.ac.nz

Joe Wheaton

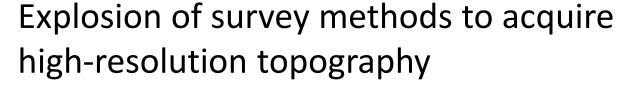
Assoc. Prof. Watershed Science, Utah State Uni.

- Fluvial Geomorphology and River Restoration
- Joe.wheaton@usu.edu



WHAT ARE WE DOING HERE?

4D Geomorphology ...

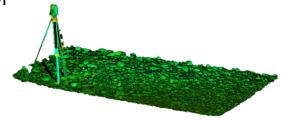

- 1. Data rich geomorphology
- 2. Topographic data and modelling
- 3. DEM differencing
- 4. GCD Framework
- Quantifying river response

TLS POINT CLOUD – RIVER FESHIE, SCOTLAND

HIGH RESOLUTION TOPOGRAPHY

Aerial & Satellite Remote Sensing

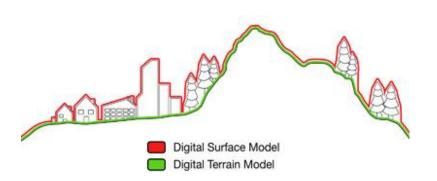
- Lidar
- Stereo Photogrammetry/SFM

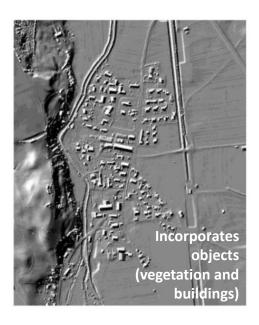


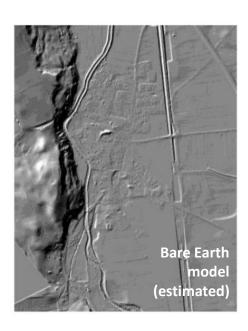
Ground-Based Surveys

- Total Station
- GNSS (GPS)
- Terrestrial Laser Scanning

- Single/Multibeam Sonar
- Optical reflectance

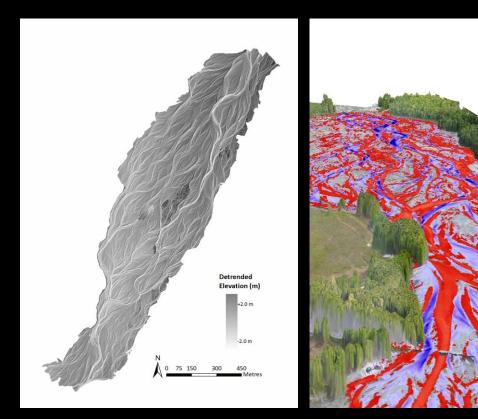


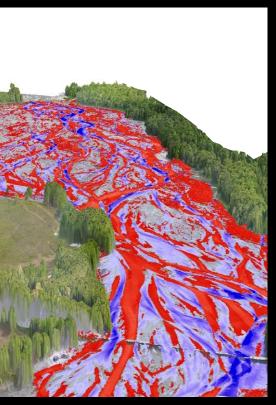


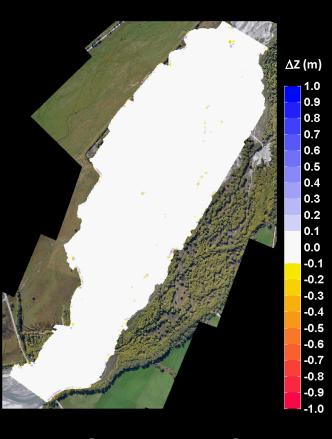

ELEVATION MODELS — DEMs, DTMs & DSMs

What are we representing in a DEM?

Terminology ... (still ambiguous)


DEM = generic term?


DTM = Digital terrain model (bare earth)

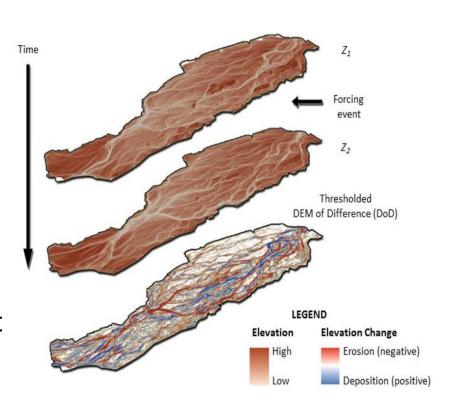

DSM = Digital surface model

DHM = DSM-DTM

APPLICATIONS OF TERRAIN DATA

MORPHOLOGY CHANGE

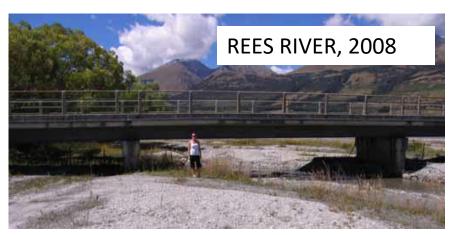
MODELLING

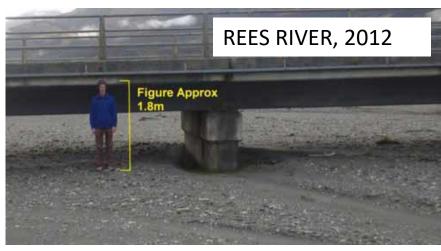

(FORM AND STRUCTURE)

(CHANGE AND BUDGETS)

(RATES AND FORCES)

QUANTIFYING GEOMORPHIC CHANGE


- Improvements in the acquisition and modelling of topography increasingly enable the development of timeseries of topographic models
- Insights into landscape change (kinematics) and the forcing processes and rates of adjustment (dynamics)
- Reduces the bias associated with measurements based on low frequency, cross-section sampling



Brasington et al., 2000 (ESPL); 2003 (Geomorp); Lane et al., 2003 (ESPL) Pasalacqua et al., 2015 (ESR) Wheaton et al., 2010 (ESPL); 2013 (JGR-ES)

POTENTIAL APPLICATIONS

- Understand pattern, magnitude & processes of landscape change
- Support quantification of hazards e.g., flood capacity, soil erosion, fault displacement; and predict impacts (asset risk, navigation)
- Resource management (e.g., sustainable gravel extraction, consent monitoring)
- Assess effectiveness of interventions/restoration activities
- Implications for co-varying phenomena (e.g. ecology)

CHANGING BED LEVEL, REES RIVER, NZ

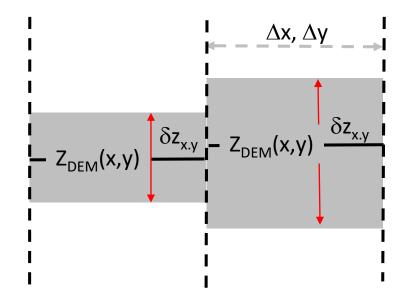
NOT JUST RIVERS ...

Geomorphological field	Application	Geomatics technology	Monitoring duration	Survey frequency	Approximate spatial extent	Reference	
Coasts	Estuary change	Bathymetric charts (lead lines and echo sounding)	150 years	Half-century	217 km ²	van der Wal et al. (2002)	
	Estuary change induced by earthquakes	Airborne LiDAR	5 months	Start and end of monitoring	5 km²	Measures et al. (2011)	
	Beach changes after a hurricane	Airborne LiDAR	Event	Pre- and post-event	40 km long coastline	Zhang et al. (2005)	
	Cliff and gully erosion	Airborne LiDAR	6 years	Start and end of monitoring	77 km long coastline	Young and Ashford (2006)	
	Cliff erosion	TLS	16 months	Monthly	0.1 km ²	Rosser et al. (2005)	
	Cliff erosion	TLS	1 year	Start and end of monitoring	0.005 km ²	Hobbs et al. (2010)	
	Cliff erosion	Oblique terrestrial imagery: SfM and MultiView Stereo	1 year	7 surveys during 1 year	0.05 km long coastline	James et al. (2012)	
Fluvial reworking of	Talus cone erosion	TLS	3 months	Start and end of monitoring	0.009 km ²	Morche et al. (2008)	
sediment stores	Cut / fill of gully and alluvial fan	Kinematic GPS	32 months	3 - 5 months	0.5 km ²	Fuller and Marden (2010)	
Glaciology	Glacier surface elevation change	Aerial photogrammetry	1 year	Start and end of monitoring	6.3 km ²	Hubbard et al. (2000)	
	Glacier surface elevation change	Aerial photogrammetry and cartographic data	18 years	Start and end of monitoring	5.5 km ²	Rippin et al. (2003)	
	Rockglacier movement	TLS	8 years	1 month - 3 years	0.04 km ²	Avian et al. (2009)	
	Glacier surface elevation change	Aerial photogrammetry and airborne LiDAR	2 years	Start and end of monitoring	6 km²	Barrand et al. (2009)	
	Debris covered glacier margins	Airborne LiDAR	4 years	Start and end of monitoring	0.5 km ²	Abermann et al. (2010)	
	Permafrost affected bedrock and glacier ice	Aerial photogrammetry and airborne LiDAR	51 years	2 - 22 years	6.5 km ²	Fischer et al. (2011)	
	Forefield sediment redistribution	Airborne LiDAR	2 years	Start and end of monitoring	2 km²	Irvine-Fynn et al. (2011)	
	Proglacial and braidplain change	Airborne LiDAR and TLS	2 years	1 day - 1 year	1.5 km ²	Carrivick et al. (2012)	
	Glacier surface elevation change	TLS	5 days	Daily	0.05 km ²	Nield et al. (2012)	
Mass movements	Mudflow	Cartographic data	45 years	1 - 16 years	1.2 km ²	van Westen and Lulie Getahun (2003)	
	Landslide	Kinematic GPS	18 months	7 - 11 months	0.04 km ²	Mora et al. (2003)	
	Earthquake triggered landslide and river erosion of deposit	Aerial photogrammetry and airborne LiDAR	14 years	1 - 11 years	6 km²	Chen et al. (2006)	
	Rockfall and slope failure (coast)	TLS	32 months	Monthly	0.1 km ²	Rosser et al. (2007)	
	Rockfall and slope failure (deglaciated terrain)	TLS	1 year	1 day - 6 months	0.06 km ²	Oppikofer et al. (2008)	
	Landslide (deep seated, Tertiary sediments)	Aerial photogrammetry and airborne LiDAR	50 years	6 - 21 years	0.8 km ²	Dewitte et al. (2008)	
	Rockslide (fjord)	TLS	2 years	Annual	0.6 km ²	Oppikofer et al. (2009)	
	Landslide (slope undercut by river)	TLS	18 months	2 - 6 months	0.01 km²	Prokop and Panholzer (2009)	
	Rockfall from landslide scar	TLS	10 months	2 - 8 months	0.004 km ²	Abellán et al. (2010)	
	Debris flow and flood	Airborne LiDAR	Event	Pre- and post-event	0.4 km ²	Bull et al. (2010)	
	Earthflow (soil and weathered bedrock)	Airborne LiDAR	4 years	Start and end of monitoring	0.06 km²	DeLong et al. (2012)	
Seismology	Deformation due to surface rupture	Airborne LiDAR	Event	Pre- and post-event	50 km long multi-fault		
Volcanology	Landslide	Aerial photogrammetry	18 years	3 - 10 years	7 km²	Fabris and Pesci (2005)	
	Slope evolution during an eruption	Aerial photogrammetry	4 years	8 days – 14 months	1 km²	Baldi et al. (2008)	
	Summit morphological change due to eruptive processes and deformation	Airborne LiDAR and aerial photogrammetry	21 years	2 – 12 years	7 km²	Neri et al. (2008)	
	Lava dome growth	Oblique terrestrial imagery	17 months	24-48 hours	1 km²	Major et al. (2009)	
	Lava flow dynamics	Airborne LiDAR	2 days	15 minute intervals	28 km²	Favalli et al. (2010)	
	Growth and deformation of a scoria cones	Airborne LiDAR	4 years	Annual	2 km²	Fornaciai et al. (2010)	
	Lahar	Airborne LiDAR	Event	Pre- and post-event	62 km long river		
	Crater wall collapse	TLS	4 years	17 - 32 months	9 km ²	Pesci et al. (2011)	

Williams, 2012 review in the newly revised and online version of 'Geomorphological Techniques' manual by the British Society for Geomorphology

British Society for Geomorphology
Techniques Paper

A SIMPLE SUBTRACTION PROBLEM?

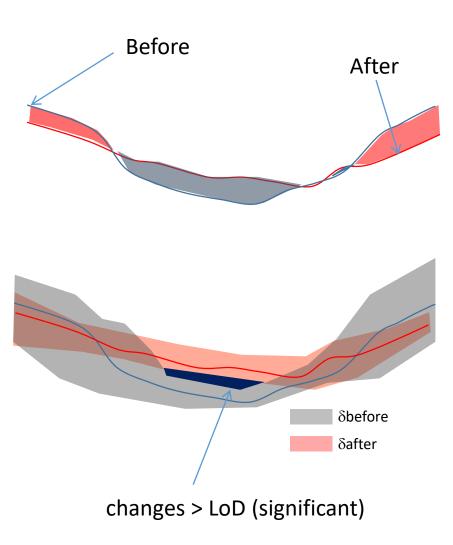

A DEM is a model of topography that will always be in error

$$\sim Z_{DEM}(x,y) \sim Z_{\mu}(x,y)$$

So, it is useful to consider that a DEM is associated with a given model of error

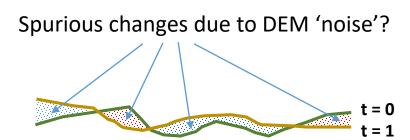
$$Z(x,y) = Z_{DEM}(x,y) + \delta(z)$$

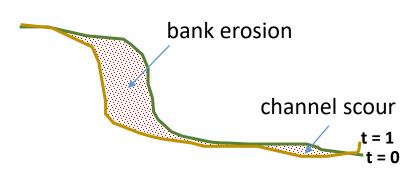
Where, $\delta(z)$ can be f(x,y)



NOT QUITE SIMPLE SUBTRACTION

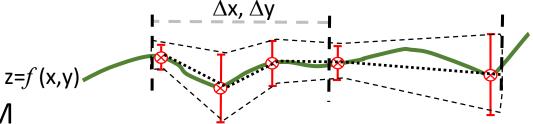
- DEM of difference (DoD) combines errors in both input models (DEMs)
- Propagation of errors from DEMs into the DoD can be estimated using the standard theory of errors (see Taylor, 1972)
- For functions, A = B + C or A = B C

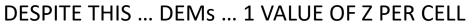

•
$$\delta_A = \sqrt{(\delta_B)^2 + (\delta_C)^2}$$

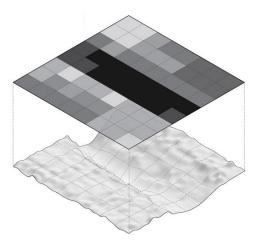

- δ_A is the propagated error in the DoD
- δ_{B} is the error in the before DEM
- δ_c is the error in the after DEM
- Define a 'minimum Limit of Detection' (LoD) to separate spurious changes from 'significant' variability

MANAGING UNCERTAINTY

- Need to separate change due to processes (erosion, deposition, deformation and interventions) from those due to errors
- Distinguish the signal of topographic change from the noise of the DEM
- Key issue: fluvial systems are generally rather flat and changes are rather small, but often widespread.
- We need: (1) accurate and precise DEMs; and (2) methods to identify changes that are significant

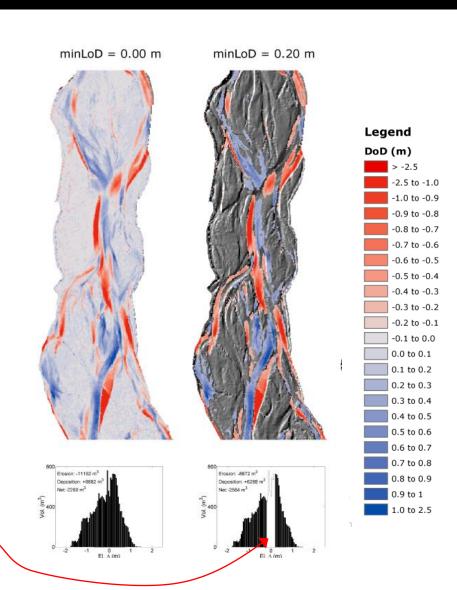



ERRORS INDIVIDUALLY MAY BE SMALL
BUT INCORPORATING THEM ACROSS
LARGE AREAS CAN LEAD TO VERY
LARGE VOLUMETRIC BIAS


UNDERSTANDING DEM ERRORS

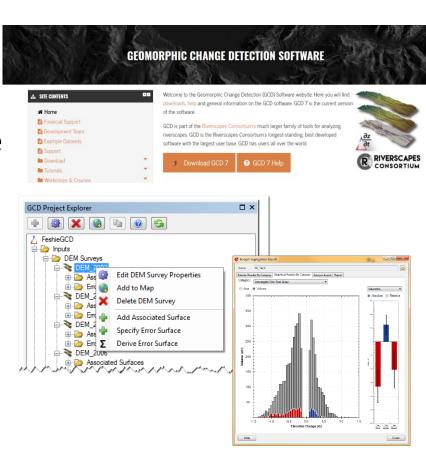
Sources of error and uncertainty:

- 1. Variability below the DEM resolution?
- 2. Survey errors and sampling density?
- 3. Interpolation and generalization?


So, even where Znew = Zold ... unlikely that Z_{DEM} new = Z_{DEM} old

LEVEL OF DETECTABLE CHANGE

 Classical approach is to specify a minimum level of detection (minLoD) to identify changes above a given magnitude

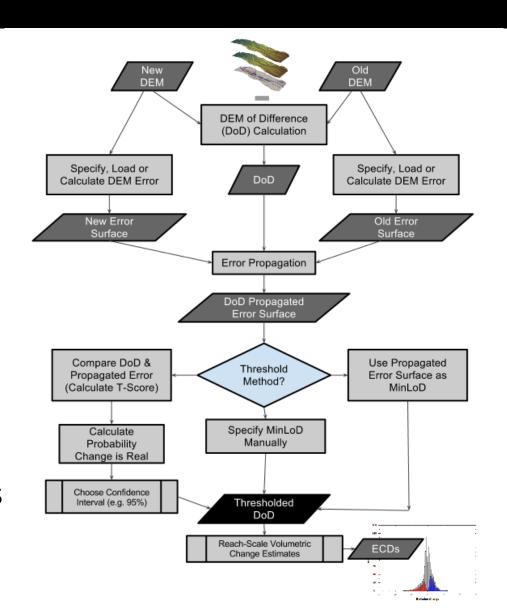

i.e., significant where $\Delta z > x$

- Where x defines a magnitude above the scale of DEM noise
- Ignore changes below the threshold ...

GCD SOFTWARE

- Geomorphic Change Detection Software
- Add-in for ArcGIS and standalone
- 10 years development programme with Joe Wheaton (USU), Philip Bailey (NAR)
- Used now by wide range of regional councils across NZ, the UK EA, SEPA, US Army Corp Engineers, USGS & practitioners and researchers worldwide

gcd.riverscapes.xyz

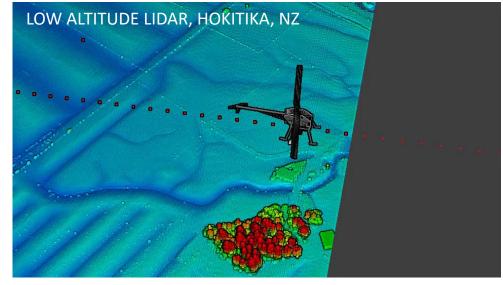

GOALS OF GCD

Define a **standard of practice** for DEM based change detection

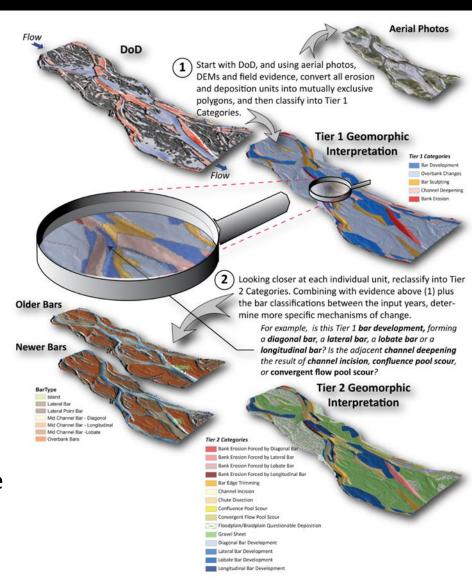
- Key aims:
 - Methods to help represent and model DEM errors
 - Workflows to threshold change detections
 - Tools to support analysis of point cloud datasets (ToPCAT)
 - Facilitate the reproducibility of results
 - Create standard methods for reporting and visualizing results (incorporated into reports, publications, maps)
 - Tools to curate project data (make it retrievable, interpretable and transportable)

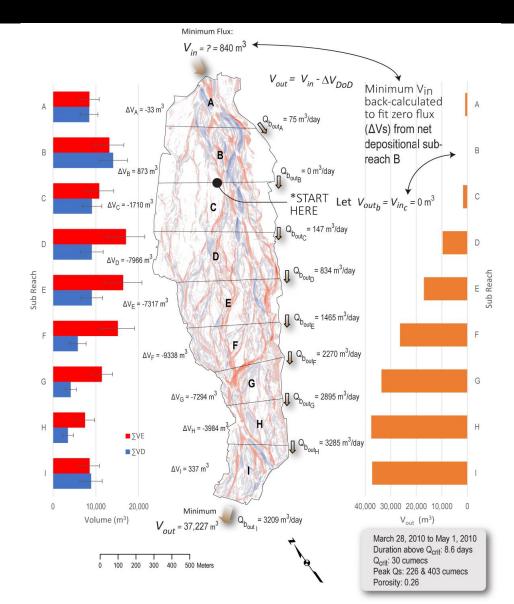
WORKFLOWS

- Multiple approaches to quantifying change
- Tools to derive error models
- Methods to represent errors spatially
- Tools for data management
- Visualization and communication of results


EMERGING OPPORTUNITIES

- Emerging 'cheap' data acquisition methods
- SfM, UAV lidar, Mobile TLS, automated TLS etc.
- High frequency monitoring
 - Temporally
 - Before/after floods
 - Monitoring for compliance
 - Spatially
 - Surface facies models
 - Vegetation modelling




DATA INTERROGATION

1) FACILTATE INTERPRETATION

- Classify and quantify morphological changes
 - e.g., Fluvial processes vs anthropogenic processes
- Spatial 'segmentation' of morphological change
 - Longitudinal analysis of changes
- Change relative to reference
 - i.e., available storage
- Sensitivity analysis
 - Evaluate the robustness of the results obtained

DERIVATIVE PRODUCTS

2) SEDIMENT TRANSPORT RATE

Reach-scale sediment budget

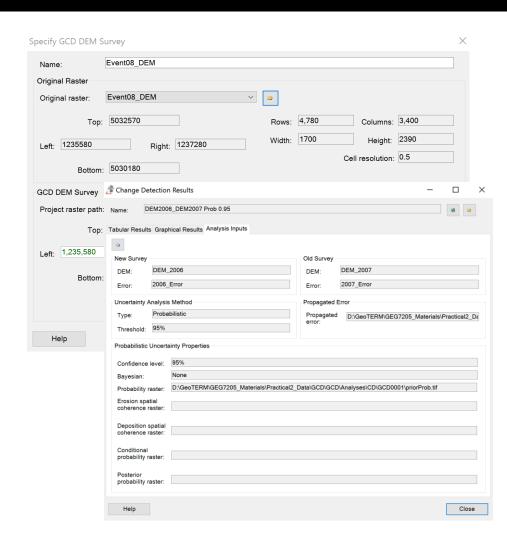
Dissect reach into units

Know or estimate a region of zero-flux and solve the longitudinal budget enabling spatial estimation of Qs

Quantification of gravel yield

COMMUNICATE RESULTS

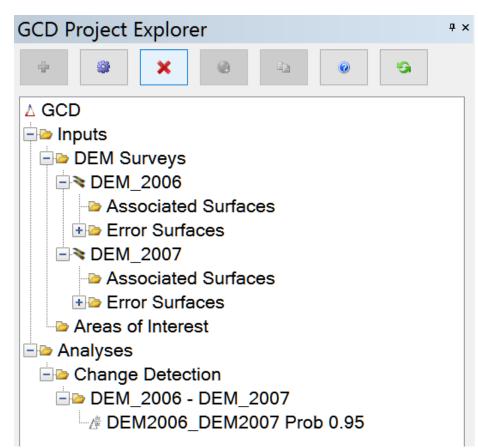
3) COMMUNICATION OF RESULTS


- Appropriate metrics
- Visualization of results
- Communication of uncertainty
- Automated / tailored reports

Attribute	Raw	Thresholded DoD Estimate:			
AREAL:					
Total Area of Erosion (m²)	57,347	21,304			
Total Area of Deposition (m²)	57,513	21,065			
Total Area of Detectable Change (m²)	NA	42,369			
Total Area of Interest (m²)	114,860	NA			
Percent of Area of Interest with Detectable Change	NA	37%			
VOLUMETRIC:				± Error Volume	% Error
Total Volume of Erosion (m³)	9,284	7,422	±	1,536	21%
Total Volume of Deposition (m³)	11,772	10,006	±	1,519	15%
Total Volume of Difference (m³)	21,056	17,429	±	3,055	18%
Total Net Volume Difference (m³)	2,489	2,584	±	2,160	84%
VERTICAL AVERAGES:				± Error Thickness	% Error
Average Depth of Erosion (m)	0.16	0.35	±	0.07	21%
Average Depth of Deposition (m)	0.20	0.48	±	0.07	15%
Average Total Thickness of Difference (m) for Area of Interest	0.18	0.15	±	0.03	18%
Average Net Thickness Difference (m) for Area of Interest	0.02	0.02	±	0.02	84%
Average Total Thickness of Difference (m) for Area With Detectable Change	NA	0.41	±	0.07	18%
Average Net Thickness Difference (m) for Area with Detectable Change	NA	0.06	±	0.05	84%
PERCENTAGES (BY VOLUME)					
Percent Erosion	44%	43%			
Percent Deposition	56%	57%			
Percent Imbalance (departure from equilibrium)	6%	7%			
Net to Total Volume Ratio	12%	15%			

TRANSPARENT WORKFLOWS

4) TRANSPARENCY


- Embed QA of process and QC of results
- Metadata
- Database structure
- Established formats of i/o and data exchange

DATA SHARING

5) SHARING

- Portability of data analyses between users
- Understanding between team members – analysts and project managers
- Established formats to exchanging results with stakeholders

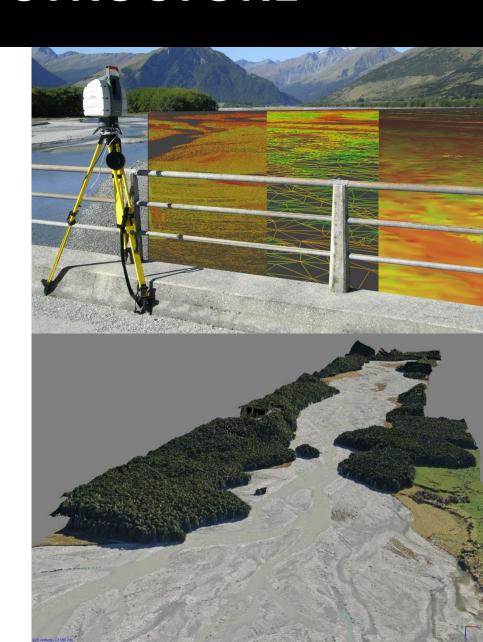
WORKSHOP STRUCTURE

Chalk and talk ... your feedback is encouraged!

1. Digital Elevation Modelling

DEM generation

2. DEM Differencing


Thresholding, the GCD software

3. GCD software functionality

 Errors, masks, sections, automation, data products

4. Modelling river response

Case studies

