

Remember Carol?

Proportion Active 50%

Recovery Potential: 63 ac. (76%)
Uplift 22 ac. (53%)

4 ac. (5%) 37 ac (45 %) 41 ac. (50%)

AC - Active channel

AF - Active floodplain

IF - Inactive

Acres of Coburn Creek Valley Bottom

Complex Design – Where do I start?

zone of influence, valley bottom, narrative, ... structure locations?

Complex Design – Where do I start?

zone of influence, valley bottom, narrative, ... structure locations?

Carol (Pops' Daughter): **Proportion Active 50%**

Recovery Potential: 63 ac. (76%) Uplift 22 ac. (53%)

4 ac. (5%) 37 ac (45 %) 41 ac. (50%)

AC - Active channel

AF - Active floodplain

IF - Inactive

Acres of Coburn Creek Valley Bottom

What could Carol's reach of Coburn be?

C: What are current riverscape conditions?

Geomorphically?

Fiparian?

- to sustain wood accumulation beaver dam activity

- to sustain wood accumulation beaver dam activity

Okay, what's my primary complex objective for this design?

- Increase instream complexity?
- Incision recovery (widen and aggrade channel)?
- Beaver Translocation?
- Increase channelfloodplain connectivity?

Well, maybe easier to answer:

"What's my outer limit or long-term

target?"

Recovery Potential: 63 ac. (76%)

Uplift 22 ac. (53%)

But **anastomosing** within recovery potential

How far towards that RP target can I get in this phase?

This is just a design for first phase of implementation

Okay, what's my primary complex objective for this design?

Increase instream complexity?

Incision recovery (wide and aggrade channel)?

Beaver Translocation?

Increase channel-floodplain connectivity?

Now I'm ready to design some structures...

Where could I target to make my way riverscape-left?

i.e. active channel

- To anastomose, I'm going to need some flow "splitting"
- To shake up straight stretches, I need to shunt and bank-blast
- Once on floodplain, I could back=up, spreadout, and/or split further

Reading Riverscape Locally

What opportunities can be accentuated?

What weaknesses can be broken up?

- To anastomose, I'm going to need some flow "splitting"
- To shake up straight stretches, I need to shunt and bank-blast
- Once on floodplain, I could back=up, spreadout, and/or split further

Get your Design Ducks in a Row

Get your legend (design pallet)

- Decide symbols and types.
- Decide whether to do points for structures or design crests
- Most importantly WHAT are you trying to achieve?

Let's pick off an easy one... PALS – Bank Blaster & ZOI

- 1. Draw crest
- 2. Draw ZOI

Hey, I gotta' structure that might do just that

Position it and draw crest

See Appendices D & E from Chap 4: Shahverdian et al. (2019; p 184-207) DOI: 10.13140/RG.2.2.22526.64324

PROFILE VIEW

NOT-TO-SCALE

YOU DID WHAT? A BANK BLASTER?

Make process intent explicit as part of design – with a ZOI

PROFILE VIEW

From Wheaton et al. (2019) – LTPBR Manual DOI: 10.13140/RG.2.2.19590.63049/1.

Draw Crest First... PALS – Bank Blaster & ZOI

- 1. Draw crest
- 2. Draw ZOI

Reading Riverscape Locally

What opportunities can be accentuated?

What weaknesses can be broken up?

- To anastomose, I'm going to need some flow "splitting"
- To shake up straight stretches, I need to shunt and bank-blast
- Once on floodplain, I could back=up, spreadout, and/or split further

How about a Primary & Secondary BDA? 1. Draw crest PALS – Bank Blaster & ZOI 2. Draw ZOI

Some BDA Structure Schematics

X-SECTION VIEW

PLANFORM VIEW

PROFILE VIEW

X-SECTION VIEW

PLANFORM VIEW

See XS View

Lay branches in overflow mattress

parallel to flow paths.

Floodplain or Terrace

the head (elevation) drop of an upstream dam.

How about a Primary & Secondary BDA? 1. Draw crest PALS – Bank Blaster & ZOI 2. Draw ZOI

Structure Types Driven by Condition and Objectives

Temptation is to use BDAs everywhere...

Simpler PALS & ALS can do trick for cheaper

CHANNEL-SPANNING PALS

- Bank-attached on both sides, such that even at low-flow there is some hydraulic purchase across most of the channel, acting to back-water flow behind it. Unlike a beaver dam (with a uniform crest elevation), channel-spanning PALS can have a variable crest elevation and rougher finish, and are generally built with much greater porosity.
- Over time, increased water depth and decreased velocity upstream of PALS encourages more wood accumulation, organic accumulation and sediment deposition, all of which can act to stabilize the structure.
- If crest elevations are higher than adjacent floodplain(s), it can increase frequency of floodplain inundation, force new diffluences, and/or promote avulsions.

 Can be used to widen the channel around (one or both sides of) the structure.

Floodplain or Terrace

PLANFORM VIEW

See XS View

Channel spanning debris jam with posts to temporarily pin in place logs.

From Pocket Guide & Wheaton et al. (2019)

Channel

DOI: 10.13140/RG.2.2.19590.63049/1

(O □LTE 1 81%

A NEVADA LOW-TECH TRIAL...

Have some gap teeth after the main part of the flooding this past month but everything is functioning to plan:)

Text message

Super excited about this anchored

log that functioned way better than I imagined

The gully didn't deepen and it might have gotten wider 😉

Nice clean gravel for the lct

Text message

Head-Cuts on Return Flows Good!

- Head-cuts get a bad name... not all are indicative of "runaway" incision
- This example indicative of floodplain connectivity!

No Single Correct Design... Many things can work

Where could I target to make my way riverscape-left?

i.e. active channelS

- To anastomose, I'm going to need some flow "splitting"
- To shake up straight stretches, I need to shunt and bank-blast
- Once on floodplain, I could back=up, spreadout, and/or split further

Another Design Example

Part 3 - Structure Focus

Although in the report and communication we talk about a "complex focus", ironically the thing we do is when learning the design process, it is easiest to think very specifically about each structure. In this 40 you through a complete design for a complex and what the GIS steps are (we can just sketch these on a field we have an App we use to help us capture this process). When you get good, typical structures tak design and a complex typically takes 20 to 30 minutes to design.

Although not necessary for reporting, it is easiest to conceptualize by designing each individual structur complex (collection of structures) as follows:

Steps Summarized

- Read local riverscape for opportunities to achieve some specific processes (i.e. hydraulic or geomorphic or ecological response), that will contribute to achieving complex objectives.
- 2. Choose an appropriate **structure type** to help immediately mimic or quickly promote that (those) process(es).
- 3. Locate the structure specifically, by drawing its crest position. This will explicitly force you to think about orientation (perpendicular, streamwise, diagonal), position (channel spanning, margin attached, mid-channel, floodplain), crest length (e.g. channel spanning, floodplain spanning, proportion of active channel) and crest height.
- 4. Articulate your expected structure **design hypothesis** with a zone of influence polygon. You can make this for immediate (e.g low flow) or future (e.g. high flow) hydraulic and/or geomorphic response. Literally what space will this structure force hydraulic and or geomorphic interaction with. In the video below, I explain some ways of thinking about this in very specific terms. With BDAs that back-water up, think about what areas will be *ponded*, versus those areas that might be *overflow* surfaces (e.g. floodplains or exposed bars). This contrasts with areas that will be left as *free flowing* and are not directly influenced by the structure. With PALS, you can think about hydraulic responses of *shunting*, *splitting*, and *backing-up* flow and what the upstream (backwater) and downstream zone of influence is associated with this.
- Combine your individual structure responses (zone of influence) into one complex zone of influence (the union of all structure ZOIs and interior areas), to summarize at complex scale.

http://capstone.restoration.usu.edu/Course_Topics/WATS_5350/Low-Tech/Projects/birch/birchdesign.html#part-3---structure-focus

Design in Field... Easier – Record a Video

How its done in field

In the field, we often use design videos (optional) to capture a bunch of information quickly that would otherwise take much longer to map and document. It allows us to keep the design agile and quick (i.e. what am I building where to do what), but convey a lot more in terms of how things are to be done on the ground. Here is an example design video (one of over 750) from a project in Washington:

Typical design videos are between 15-45 seconds, and simply show what is meant by build this type of structure here. It allows us to use simple flagging or paint to denote location (in addition to a dot or line in GIS), and we have built apps that

باک به العرب به خصوره ۱۳۸۸ از طروع از این از طروع باز این برافز از میان باز و از این باز از میان باز این باز ای