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PBR? Just a cute can or some science?
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Description

1.

Target root causes of habitat and
ecosystem change

Tallor restoration actions to local
potential

Match the scale of restoration to the
scale of the problem

Be explicit about expected
outcomes

Restoration actions are designed to address the human alterations to processes that
are degrading habitat conditions

A given reach in a river network operates within specific constraints based on its
location within the watershed and climatic and physiographic setting. Understanding
the types and magnitudes of processes within a given reach helps design restoration
actions.

When disrupted processes causing degradation occur at the reach scale, restoration
actions at individual sites can effectively address root causes. When causes of
degradation occur at the watershed scale, many individual site-scale actions are
required.

Process-based restoration is a long-term endeavor and there are often long lag times
between implementation and recovery and biota may not improve dramatically with
any single action. Articulating restoration goals and pathways is critical to setting
appropriate expectations.
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What constitutes a healthy riverscape?
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1. Streams Need Space

Healthy streams are dynamic, regularly shifting position within their valley bottom, re-
working and interacting with their floodp/lain. Allowing streams to adjust within their
valley bottom is essential for maintaining functioning rniverscapes.

* Give rivers back their
floodplains

» Assess what a r_iver
nee_ds to exercise
during floods

* Either reclaim, or
conserve space to flood

A-C River space freedom B-D River space freedom E- Maps based on flood
(integral maps) (simplified maps) frequency
10.13140/RG.2.2.28222.131231 |7 i — ik — B C:20 focdetuem k]
Mhsocpiain [0 Fmed I Lo 20-100 flood return period
Fiow Lrare

10.13140/RG.2.2.34270.69447 10.1007/s00267-014-0366-z
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(i.e. their valley bottoms)
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2. Structure forces Complexity & Builds
Resilience

Uplands
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Key Processes are Structurally-Forced
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PATHWAY T0.COMPLEXITY
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What are some component ?

vs. Nouns vs.

- floodplain flood flows
baseflow
- store topography/sediment

. (production)

The Biology
. S
So are these the P in PBR? Ef,';;ii?on

Triangle

CA-LL

Hvd rology SET with the plar::f:;r:lop:::e;:so:ﬂ:efi;lzel;i:l;{ Schumm (1985). G eology

Castro, 1.M. and Thorne, C.R. 2019. The Stream Evolution Triangle: linking Geology, Hydrology
and Biology, River Research and Applications. https://doi.org/10.1002/rra.3421




Key Processes to

From Shahveridan et al. (2019)
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Need A Simple Before & After?
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South Fork Asotin Creek: Planformed Controlled with Discontinuous Floodplain Lattude: 46.24869088939151
Longitude: -117.2892015084726

Condition: Poor Geomorphic Units Pre Restoration
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Adding P.A.L.S. (Wood)

STHUCT URE "ORCES COMPLEXITY & BUILDS RESILIENCE
50 S PRINCIPLE 2.




South Fork Asotin Creek: Planformed Controlled with Discontinuous Floodplain Lattude: 46.24869088939151
Longitude: -117.2892015084726

Condition: Poor Geomorphic Units Pre Restoration
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Structurally-Forced Resilience to Drought Stemanetal 2016) oase

Page 15 of LTPBR Pocket Guide
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Another example of Structurall -Forced _
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Riparian areas burntto-ground - - i
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3. The Importance of Structure Varies

The relative importance and abundance of structural elements varies based on reach
tvpe, valley setting, flow regime and watershed context. Recognizing what type of
stream you are dealing with (Le., what other streams it is simifar to) helps develop
realistic expectations about what that stream should or could look (form) and behave
(process) like.

10.13140/RG.2.2.28222.13123/1

10.13140/RG.2.2.34270.69447

% An example of confined headwaters where. N O
wood accumulation plays a major role. J‘" Tt
1 : _il ’ ng r-::;-’"" ;
S g g T 4 \\""

Partly-confined beaver meadow reach
where beaver dam activity plays a major
role.

Partly-confined mainstem reach
where the flow regime plays a larger
role than structure.
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And we can map geomorphology matters

10.13140/RG.2.2.28222.13123/1

10.13140/RG.2.2.34270.69447
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4. Inefficiency 1s healthy

Hydrologic inefficiency is the hallmark of a healthy system. More diverse residence times
for water can attenuate potentially damaging floods, fill up valley bottom sponges, and
slowly release that water [ater elevating baseflow and producing critical ecosystem
Services.

10.13140/RG.2.2.34270.69447

Which one wins race?
Efficient or Inefficient?
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How Does Flow Chang ge With Dams?

Valley Bottom

Old Wetted Extent = .. %%
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Typical Impact on Flows

 Lower peaks @ flood
* Elevated baseflow following

120

Contants lists available at ScienceDirect |

uuuuuuuuu
| MYERE S

Journal of Hydrology t

journal homepage: www.elsevier.com/locate/jhydrol

Effect of beaver dams on the hydrology of small mountain streams: Example
from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium

J. Nyssen™*, ]. Pontzeele?, P. Billi*"

* Department of Geography, Ghent Universiy, Belgium
® Department of Earth Sciences, University of Fermra, aly

100 |

Flow
(ft3/s)
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% valley bottom inundation by type
type
I Free flowing

| Overflow
B Ponded

50
percent

* Inundation types RN AT
" Valley bottom Beaver dam Inundation

great proxy for $ surface
residence time... et

type
Blown-out - Free flowing
Breached - Overflow

- Ponded




(mean T-C)pre - (mean T-C)post

density (no./100m)

Habitat quality matters, but

quantity matters more to fish

& The Water Magic Trick

 Restoration using BDAs &
beaver as restoration agent
produced a population level
Increase in density, survival
and production of ESA listed
salmon
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Bridge Murderers Metric Comparisons

10.1038/srep28581

SCIENTIFIC REPg}RTS

OPEN

Ecosystem experiment reveals
benefits of natural and simulated
beaver dams to athreatened
population of steelhead
(Oncorhynchus mykiss)

Recaivad: 16 Decamber 2015
Accapted: 07 June 2016
Published: 04 July 2016

Nicolaas Bouwes*?, Nicholas Weber?, Chris E. Jordan®, W. Carl Saunders™2, lan A. Tattam*,
Carol VolkE, Joseph M. Wheaton? & Michael M. Pollock?
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Low-Tech Restoration (&=

s okay to be messy Based Restoration

strength in numbers = = Lowecr
ural building materials P rinci p I eés
8. Letthe system do the work

9. Defer decision making to the system
). Self-sustaining systems are the solution

W o

Uplands

Uplands
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| S From pages 3-4 of Pocket Guide; Wheaton et al. (2@?)

| ' . DOI: 10.13140/RG.2.2.28222.131.
See Wheaton et al. (20(3, p72)

© O Nick Webe: . OBLIQUE VIEW Chapter 2 LTPBR Manual for PrinCiples
| 5 LOOKING UPSTREAM DOI: 10.13140/RG.2.2.34270.69447
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Beaver Like to Make Messes... 5o can you

* And it is precisely that
messiness, thatis so critical to
ecosystem health

* So why not take a cue from the
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b. There 1s strength in numbers

Implemented Structures

A Seeding A .

A Deflector : ' = v ¢ 3 _ - \
% Mid-Channel ; @ ELR _&g\ze B.ép %"\
@® DebrisJam —

- S,

© Spanner

1.0 mil m&ﬂmwm
0.5 .0 mile

10.13140/RG.2.2.34270.69447
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WADEABLE

THERE IS STRENGTH IN NUMBERS
RESTORATION PRINCIPLE 6.

Stream Order

2nd —

1st

I I I I I [ I I I I ]
0 5000 10,000

Miles of Riverscapes




This is what density looks like!







THERE IS STRENGTH IN NUMBERS
RESTORATION PRINCIPLE 6.

Build the workforce!
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/. Use Natural Building Materials

A

Sourcing

banksin b

10.13140/RG.2.2.28222.13123/1

10.13140/RG.2.2.34270.69447

@0 fymﬁ,«m Wi LAk o8, Py ; USE NATURAL BUILDING MATERIALS
srio s 1 EANE ARl f RESTORATION PRINCIPLE 7.
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R REMOVAL

More recent PJ removal

Older PJ removal treatment treatments

with subsequent sage brush
& rabbit brush moving back in

Take harvested woody material _
where its not needed ;

ANABRANCH :
SOlUTloﬂs



http://dx.doi.org/10.13140/RG.2.2.19590.63049/1

8. Let the system do the work

Geomorphic work like erosion &
deposition instead of grading!

SEEFTHEWATER DOMTHE'WORK “What if restoration was about stream
Induced Meandering,

aniEsoluinsaiiod power doing the work, not diesel

_fqu Restoring power 27
IncisedChannels ~

— Jared McKee (USFWS)

U 3 Bill Zeedyk
ﬁ&} : and Van Clothiel'

: See Wheaton et al. (2019, p 77)
: ‘. L Chapter 2 LTPBR Manual for Principles
v : DOI: 10.13140/RG.2.2.34270.69447

o it
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9. Defer Decision Making to System
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DEFER DECISION MAKING TO THE SYSTEM
RESTORATION PRINCIPLE 9.

Wherever possible, let the system make critical design decisions for us by simply
providing the tools and space it needs to adjust. Deferring decision making to the
system downplays the significance of uncertainty due to mited knowledge. For
example, choosing a floodplain elevation to grade to based on limited hydrology
information can be a complex and uncertain endeavor, but deferring to the hydrology
of that system to build its own floodplain grade reduces the importance of uncertainty

due to imited knowledge.
= = - STANDARD ENGINEERING PRACTICE
Wh at dGCISIO“S do We make In Engineering Plan Indicates where
- = - - ' M Ft‘ayaturels to ‘be‘ In;tqllef o
traditional restoration design? S AL [ PR S

* How far to erode bank?
e Channel width
* Slope

Specific Topographic
Design Cross Sections (e.g. A-A’)

e Planform

» Elevation to set floodplain®®
 Capacity of channel




10. Self-Sustaining Systems are the Solution

From Goldfarb (2018) Science:
http://science.sciencemagq.org/content/360/6393/1058

“, : : : "
g Eoe " R

4

;5: o

Water table
Adding dams Widening the trench Beavers return A complex haven
Beaver trapping and overgrazing BDAs divert flows, causing streams As BDAs trap sediment, the stream Re-established beavers raise
have caused countless creeks to cut to cut into banks, widening the bed rebuilds and forces water water tables, irrigate new stands
deep trenches and water tables incised channel, and creating a onto the floodplain, recharging of willow and alder, and create a
to drop, drying floodplains. Installing supply of sediment that helps raise groundwater. Slower flows allow maze of pools and side channels
BDAs can help. the stream bed. beavers to recolonize. for fish and wildlife.

¥ . What's your exit strategy?

BEAVERS, o .
REBOOTED Mimic — Promote — Sustain

Artificial beaver dams are a hot
restoration strategy, but the
prajects aren't always welcome

By Ben Goldfarb, in the Scott Valley, California
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From Mlmlckmg to Promoting to Sustaining Processes

BDA Complex

Expaj}dedbvBeaver _ ’ ‘ : : HOW do your
o ) : restoration actions:

* Immediately mimic
a process?

* Quickly (relatively)
promote a process?

 Eventually sustain a

S process?

DA-4
B\ 2ndary
OBLIQUE V LEW

LOOKING UPSTREAM

Mimic — Promote — Sustain

AINING SYSTEMS ARE THE SOLUTION
RESTORATION PRINCIPLE 10. 10.13140/RG.2.2.19590.63049/1.
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Zone of Influence — Beaver Translocation
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What principle(s) does this represent?
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Low-tech process-based restoration
noun
1. A practice of using simple, low unit-cost, structural additions (e.g., wood and beaver dams) to riverscapes to
mimic functions and promote specific processes. Hallmarks of this approach include an explicit focus on the
promoting geomorphic and fluvial processes, a conscious effort to use cost-effective, low-tech treatments
(e.g., hand-built, natural materials, non-engineered, short-term design life-spans) because of the need to
efficiently scale-up application, and ‘Letting the system do the work’, which defers critical decision making to
riverscapes and beaver.
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