SKS HYDRAULIC TECHNOLOGY CO.,LTD.

No.195 Huaye Street, Jiangbei District, Ningbo City, Zhejiang Province, China.

ZHEJIANG SKS HYDRAULIC CO.,LTD.

No.1058, Jiangxian Road, Yuxin Town, Nanhu District, Jiaxing City, Zhejiang Province, China.

Tel: 0086-574-87629258 E-mail:sales@saikesi.com

y SKS

OTOR

Founded in 2014, Zhejiang SKS Hydraulic Co., Ltd. is a wholly-owned subsidiary of SKS Hydraulic Technology Co., Ltd. with a registered capital of RMB 0.5 billion yuan, which locates in No. 1058, Jiangxian Road, Yuxin Town, Nanhu District, Jiaxing, Zhejiang Province. Our company covers an area of about 160 mu, in which the standardized workshop and supporting facilities of about 105,000 square meters are built.

Zhejiang SKS is a national high-tech enterprise, mainly engaged in the design, R & D, production and sales of hydraulic components, reducers and parts. Its main products are hydraulic plunger pumps, hydraulic motors, reducers and other components and parts, which are widely used in hydraulic equipment systems such as engineering machinery, ship machinery, mining machinery, etc. Our company has introduced advanced casting production lines, heat treatment production lines, machining production lines and component test production lines from Germany, Japan, Denmark, Taiwan and other countries and regional companies, which realizes complete independent development and production of products, and forms world advanced hydraulic component and reducer production system. At the same time our company has also established provincial high-tech R & D center and high-end hydraulic research institute.

Zhejiang SKS is committed to becoming a leader in the hydraulic drive industry and fully building "SKS" to become a world hydraulic brand. Our company strives to enter the ranks of the best comprehensive manufacturers of components and parts in China and even the world, makes excellent hydraulic components to provide global customers with high–quality hydraulic products and hydraulic transmission solutions, and configures "China Core" for Chinese engineering machinery.

sales: +86-574-8762 9258

Contents

SA2FE ——	—— 0 3
SA2FM ——	20
SA6VE —	50
SA6VM —	78

MOTOR

Fixed Plug-In Motor SA2FE Series

Size 28 to 180

Nominal pressure/Maximum pressure

400/450 bar

Open and closed circuits

Contents

Ordering code for standard program	04
Technical data —————————	06
Dimensions sizes 28 to 180	09
Flushing and boost pressure valve —————	11
Pressure-relief valve	12
Counterbalance valve BVD	14
Speed sensors	18
Installation instructions ———————	19

Ordering code for standard program

	SA2F		Ε		/	6		W	-	V				
01	02	03	04	05		06	07	08		09	10	11	12	13

Hydrauli	c fluid	
----------	---------	--

	Mineral oil and HFD.		
01	HFB, HFC hydraulic fluid	Sizes 28 to 180 (without code)	
			E-

Axial piston unit

02 Bent-axis design, fixed SA2F

	Drive shaft bearing	28 to 180	
00	Standard bearing (without code)	•	
03	Long-life bearing	_	L

Operating mode

04 Motor, plug-in version

Sizes (NG)

05	Geometric displacement, see table of values on page 7														
05		28	32	45	56	63	80	90	107	125	160	180			

Series

Index

NG28 to 180

Direction of rotation

08 Viewed on drive shaft, bidirectional W

09 FKM (fluor-caoutchouc)

Dri	ve shafts	28	32	45	56	63	80	90	107	125	160	180		_
Sp	olined shaft	•	•	•	•	•	•	•	•	•	•	•	Α	
¹⁰ DII	N 5480	•	•	•	•	•	•	•	•	•	•	•	Z	

	Mounting flanges		28 to 180	
11	ISO 3019-2	2-hole	•	L

● = Available - = Not available

Ordering code for standard program

	SA2F		Е		/	6		W	ı	٧				
01	02	03	04	05		06	07	08		09	10	11	12	13

	Port plates			28	32	45	56	63	80	90	107	125	160	180	
	SAE flange ports	01	0	-	-	-	-	-	-	-	-	-	-	-	010
	A and B at rear		7	_	-	-	-	-	-	-	-	-	-	-	017
	SAE flange ports	02	0	_	-	-	-	-	-	-	-	-	-	-	020
	A and B at side, opposite		7	_	-	•	•	•	•	•	•	•	•	•	027
	SAE flange ports	10	0	•	•	•	•	•	•	•	•	•	•	•	100
	A and B at bottom (same side)		7	_	-	-	-	-	-	-	-	-	-	-	107
	Port plate BVD	17	1	-	-	-	-	-	-	-	•	•	-	-	171 178
		18	8	•	•	•	•	•	•	•	•	•	•	•	181
12	Port plate with	19	1	•	•	•	•	•	•	•	•	•	•	•	191
	pressure-relief valves		2	•	•	•	•	•	•	•	•	•	•	•	192
	Valves		≜												
	Without valve														
	Pressure-relief valve (without pressu	ıre b	00	st faci	lity)				1						
1			_	\						1					

Pressure-relief valve (without pressure boost facility)	1				
Pressure-relief valve (with pressure boost facility)					
Flushing and boost pressure valve, mounted	7				
Counterbalance valve BVD/BVE mounted ²⁾³⁾					
Flushing and boost pressure valve, integrated	9				
Speed sensor					

	Speed sensor	28 to 45	56 to 180	
	Without speed sensor (without code)	•	•	
	Prepared for HDD speed sensor	•	•	F
13	HDD speed sensor mounted ⁵⁾	•	•	Н
	Prepared for DSA speed sensor	0	0	U
	DSA speed sensor mounted ⁵⁾	0	0	٧

 \bullet = Available O = On request - = Not available

SA2FE Series <<<

Technical data

Table of values (theoretical values, without efficiency and tolerances; values rounded)

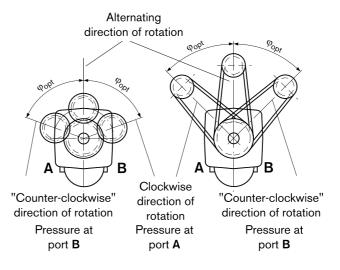
Size		NG		28	32	45	56	63	80
Displacement of per revolution	geometric,	V_g	cm ³	28.1	32	45.6	56.1	63	80.4
Speed maximu	m ¹⁾	n _{nom}	rpm	6300	6300	5600	5000	5000	4500
		n _{max} ²⁾	rpm	6900	6900	6200	5500	5500	5000
Input flow ³⁾									
at n _{nom} and	V_g	q_V	L/min	177	202	255	281	315	362
Torque ⁴⁾									
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	T	Nm	179	204	290	357	401	512
Rotary stiffness		С	kNm/ rad	2.93	3.12	4.18	5.94	6.25	8.73
Moment of iner	tia for rotary group	J_{GR}	kgm ²	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum angu	α	rad/s ²	6500	6500	14600	7500	7500	6000	
Case volume	V	L	0.20	0.20	0.33	0.45	0.45	0.55	
Mass (approx.)		m	kg	10.5	10.5	15	18	19	23
o :		NO.		امما			400	400	
Size		NG	0	90	107	125	160	180	
	geometric, per revolution	Vg	cm ³	90	106.7	125	160.4	180	
	n _{nom}	rpm	4500	4000	4000	3600	3600		
Speed maximu		- 3				4 4 0 0	4000	4000	
Speed maximum		$n_{\text{max}}^{2)}$	rpm	5000	4400	4400	4000	4000	
Input flow3)		n _{max} ²⁾	<u> </u>						
Input flow3) at n _{nom} and		n _{max} ²⁾	rpm L/min	405	427	500	577	648	
Input flow3) at n _{nom} and Torque ⁴⁾	V _g	qv	L/min	405	427	500	577	648	
Input flow3) at n _{nom} and Torque ⁴⁾	V_g $\Delta p = 350 \text{ bar}$	q _V	L/min	405 501	427 594	500 696	577 893	648	
Input flow3) at n _{nom} and Torque ⁴⁾	V _g	qv	L/min Nm Nm	405	427	500	577	648	
Input flow3 ⁾ at n _{nom} and Torque ⁴⁾ at V _g and	V_g $\Delta p = 350 \text{ bar}$	q _V	L/min	405 501	427 594	500 696	577 893	648	
Input flow3) at n _{nom} and Torque ⁴⁾ at V _g and Rotary stiffness	V_g $\Delta p = 350 \text{ bar}$	qv T T	L/min Nm Nm kNm/	405 501 573	427 594 679	500 696 796	577 893 1021	648 1003 1146	
Input flow3) at n _{nom} and Torque ⁴⁾ at V _g and Rotary stiffness Moment of iner	V_g $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ tia for rotary group	qv T T	L/min Nm Nm kNm/ rad	405 501 573 9.14	594 679 11.2	500 696 796 11.9	577 893 1021 17.4	648 1003 1146 18.2	
Input flow3) at n _{nom} and Torque ⁴⁾ at V _g and Rotary stiffness	V_g $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ tia for rotary group	q _V T T c	L/min Nm Nm kNm/ rad kgm²	405 501 573 9.14 0.0072	427 594 679 11.2 0.0116	500 696 796 11.9 0.0116	577 893 1021 17.4 0.0220	648 1003 1146 18.2 0.0220	

Technical data

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size		NG		28	28	32	45	56	56	56
Drive shaft		Ø	mm	25	30	30	30	30	30	35
Maximum radial force	Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1
at distance a (from shaft collar)	a	a	mm	16	16	16	18	18	18	18
with permissible torq	ue	T_{max}	Nm	179	179	204	290	357	294	357
△ permissible pressu	ure ∆p	Δp_{perm}	bar	400	400	400	400	400	330	400
Maximum axial force	- fh	+F _{ax max}	N	500	500	500	630	800	800	800
	F _{ax} ±==	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7
Size		NG		63	80	80	80	90	107	107
Drive shaft		Ø	mm	35	35	35	40	40	40	45
Maximum radial force	Fq	F _{q max}	kN	9.1	11.6	11.1	11.4	11.4	13.6	14.1
at distance a (from shaft collar)	a	a	mm	18	20	20	20	20	20	20
with permissible torq	ue	T_{max}	Nm	401	512	488	512	573	679	679
△ permissible pressi	ure Δp	Δp_{perm}	bar	400	400	380	400	400	400	400
Maximum axial force	- +→ → ↑ ↑ ↑	+F _{ax max}	N	800	1000	1000	1000	1000	1250	1250
	'ax	-F _{ax max}	N	0	0	0	0	0	0	0
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	8.7	10.6	10.6	10.6	10.6	12.9	12.9
Size		NG		125	160	160	180			
Drive shaft		Ø	mm	45	45	50	50			
Maximum radial force	Fq	F _{q max}	kN	14.1	18.1	18.3	18.3			
at distance a (from shaft collar)	a	a	mm	20	25	25	25			
with permissible torq	ue	T_{max}	Nm	796	1021	1021	1146			
≜ permissible pressi	ure ∆p	Δp_{perm}	bar	400	400	400	400			
Maximum axial force	E +	+F _{ax max}	N	1250	1600	1600	1600			
	F _{ax} ±±==	-F _{ax max}	N	0	0	0	0	_		
Permissible axial force pressure	per bar operating	±F _{ax perm/bar}	N/bar	12.9	16.7	16.7	16.7			



Technical data

Effect of radial force F_q on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	φ _{opt}	Форт
28 to 180	± 70°	± 45°

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot n}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_q}$$
 [min⁻¹]

Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

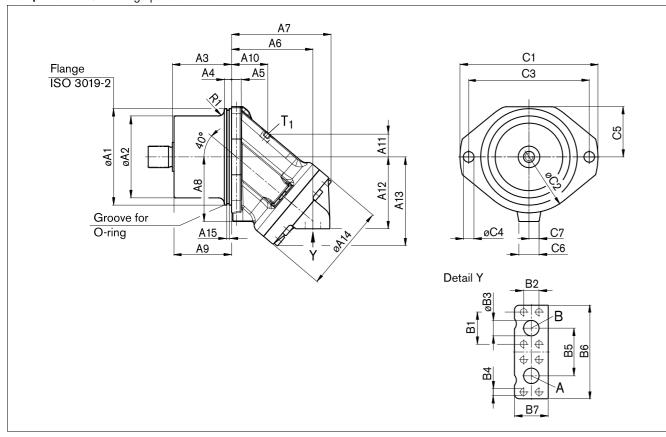
Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600}$$
 [kW

 V_g = Displacement per revolution in cm³

Δp = Differential pressure in bar

n = Speed in rpm

v = Volumetric efficiency


η_{mh} = Mechanical-hydraulic efficiency

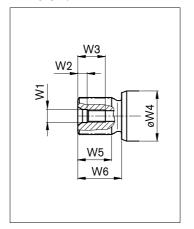
 η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Dimensions sizes 28 to 180

Port plate 10 – SAE flange ports at bottom

Size	øA1	øA2	А3	Α4	A5	A6	A7	A8	Α9	A10	A11	A12	A13	øA14	A15
28, 32	135 _{-0.025}	94 _{-0.5}	88.8	15	16	94	114	95	87.1	45	27	91	106	106	5.2
45	160 _{-0.025}	117 ^{+1.5}	92.3	15	18	109	133	106	90	50	31.3	102	119	118	5.2
56, 63	160 _{-0.025}	121 _{-0.5}	92.3	15	18	122	146	109	90	59	34	107	130	128	5.2
80, 90	190 _{-0.029}	140.3 _{-0.5}	110	15	20	127	157	123	106	54	41	121	145	138	5.2
107, 125	200 _{-0.029}	152.3 _{-0.5}	122.8	15	20	143	178	135	119	58	41	136	157	150	5.2
160, 180	200 _{-0.029}	171.6 _{-0.5}	122.8	15	20	169	206	134	119.3	75	47	149	185	180	5.2

Size	B1	B2	øB3	B4, DIN 13	B5	B6	B7	C1	øC2	C3	øC4	C5	C6	C7
28, 32	40.5	18.2	13	M8 x 1.25; 15 deep	59	115	40	188	154	160	14	71	42	13
45	50.8	23.8	19	M10 x 1.5; 17 deep	75	147	49	235	190	200	18	82	47.5	15
56, 63	50.8	23.8	19	M10 x 1.5; 17 deep	75	147	48	235	190	200	18	82	36	0
80, 90	57.2	27.8	25	M12 x 1.75; 17 deep	84	166	60	260	220	224	22	98	40	0
107, 125	66.7	31.8	32	M14 x 2; 19 deep	99	194	70	286	232	250	22	103	40	0
160, 180	66.7	31.8	32	M14 x 2; 19 deep	99	194	70	286	232	250	22	104	42	0


Size	R1	O-ring	Service line port A, B SAE J518	Drain port T ₁ DIN 3852
28, 32	10	126 x 4	1/2 in	M16 x 1.5; 12 deep
45	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
56, 63	10	150 x 4	3/4 in	M18 x 1.5; 12 deep
80, 90	10	180 x 4	1 in	M18 x 1.5; 12 deep
107, 125	16	192 x 4	1 1/4 in	M18 x 1.5; 12 deep
160, 180	12	192 x 4	1 1/4 in	M22 x 1.5; 14 deep

(K) SKS HYDRAULICS

SA2FE Series <<<

Dimensions sizes 28 to 180

Drive shaft

Size	Splined shaft (DIN 5480)	W1	W2	W3	øW4	W5	W6
28, 32	A W30 x 2 x 14 x 9g	M10 x 1.5	7.5	22	35	27	35
28	Z W25 x 1.25 x 18 x 9g	M8 x 1.25	6	19	35	28	43
45	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	35	27	35
56, 63	A W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	40	32	40
56	Z W30 x 2 x 14 x 9g	M12 x 1.75	9.5	28	40	27	35
80, 90	A W40 x 2 x 18 x 9g	M16 x 2	12	36	45	37	45
80	Z W35 x 2 x 16 x 9g	M12 x 1.75	9.5	28	45	32	40
107, 125	A W45 x 2 x 21 x 9g	M16 x 2	12	36	50	42	50
107	Z W40 x 2 x 18 x 9g	M12 x 1.75	9.5	28	50	37	45
160, 180	A W50 x 2 x 24 x 9g	M16 x 2	12	36	60	44	55
160	Z W45 x 2 x 21 x 9g	M16 x 2	12	36	60	42	50

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027 (sizes 45 to 180) the valve is mounted directly on the fixed motor.

Cracking pressure of pressure retaining valve

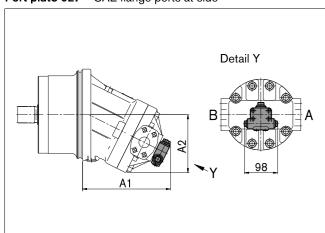
(observe when setting the primary valve)
Sizes 45 to 180, fixed setting______16 bar

Switching pressure of flushing piston Δp Sizes 45 to 180 8±1 bar

Flushing flow q_v

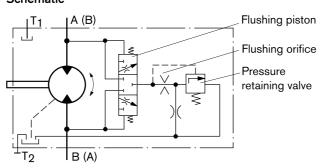
Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:


 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s

 $(p_{ND} = low pressure, p_G = case pressure)$

Dimensions


Sizes 107 to 180

Port plate 027 - SAE flange ports at side

Size	A1	A2
107, 125	211	192
	232	201
160, 180	•	

Schematic

Standard flushing flows

Flushing and boost pressure valve

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice				
45	3.5	1.2	R909651766				
107, 125	8	1.8	R909419696				
160, 180	10	2.0	R909419697				

With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

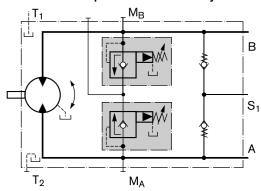
Flushing and boost pressure valve

Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

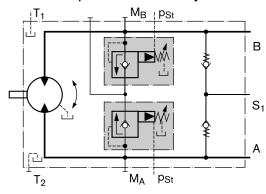
Ressure-relief valve

The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).

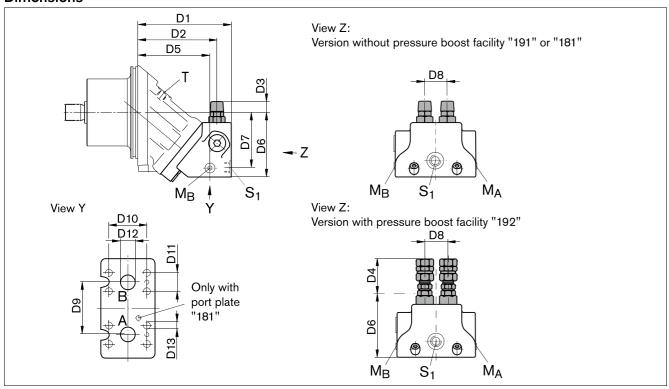

Cracking pressure setting range 50 to 420 bar

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St}.


When ordering, please state in plain text:

- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Version without pressure boost facility "191"


Version with pressure boost facility "192"

Pressure-relief valve

Dimensions

Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13
28, 32	MHDB.16	145	122	25	68	110	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB.16	161	137	22	65	126	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB. 22	189	162	19	61	147	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB. 22	193	165	17.5	59	151	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB. 32	216	184	10	52	168	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB. 32	249	218	5	47	202	170	149	53	84	66.7	31.8	ø32	M14; 19 deep

Size	A, B	S ₁	M_A , M_B	P _{St}
28, 32	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
45	3/4 in	M22 x 1.5; 14 deep	M20 x 1.5; 14 deep	G 1/4
56, 63	3/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
80, 90	1 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
107, 125	1 1/4 in	M26 x 1.5; 16 deep	M26 x 1.5; 16 deep	G 1/4
160, 180	1 1/4 in	M26 x 1.5; 16 deep	M30 x 1.5; 16 deep	G 1/4

Assembly instruction for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the p_{st} port!

Ports

Designation	Port for	Standard	Size	Maximum pressure [bar]	State
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Χ
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

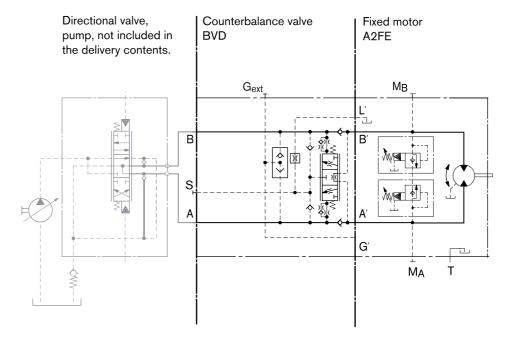
Counterbalance valve BVD

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note


- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FE90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
- the pressure at the start of opening
- the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
- the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FE090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

Counterbalance valve BVD

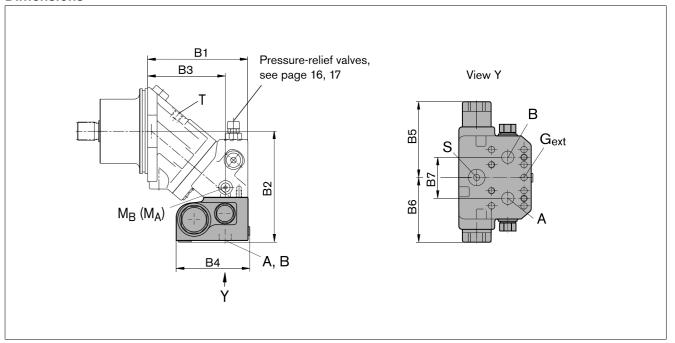
Winch counterbalance valve BVD...W

Application options

- Winch drive in cranes (BVD)
- Track drive in excavator crawlers (BVD)

Permissible input flow or pressure in operation with BVD

	Without val	ve	Restricted values in operation with BVD			
Motor			BVD			
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _V [L/min]	Code
28	400/450	176	20	350/420	100	188
32		201	(BVD)			
45		255				
56		280			220	
63		315				
80		360				
90		405				
107		427				178
125		500				
107		427	25		320	188
125		500	(BVD)			
160		577				
180		648				


BVD _____counterbalance valve, double-acting

SA2FE Series <<<

Counterbalance valve BVD and BVE

Dimensions

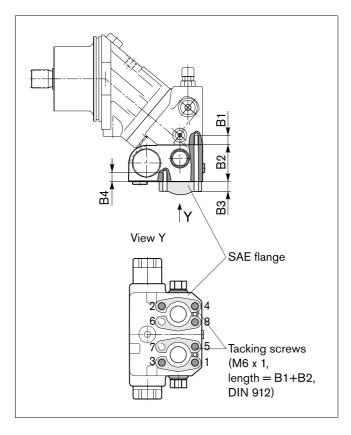
A2FE	Counterbalance valve									
Size	Туре	Ports	Dimen	sions						
		A, B	B1	B2	В3	B4 (S)	B4 (L)	B5	В6	B7
28, 32	BVD 20 16	3/4 in	145	175	110	142	147	139	98	66
45	BVD 20 16	3/4 in	161	196	126	142	147	139	98	66
56, 63	BVD 20 17	3/4 in	189	197	147	142	147	139	98	75
80, 90	BVD 20 27	1 in	193	207	151	142	147	139	98	75
107, 125	BVD 20 28	1 in	216	238	168	142	147	139	98	84
107, 125	BVD 25 38	1 ¹ / ₄ in	216	239	168	158	163	175	120.5	84
160, 180	BVD 25 38	1 ¹ / ₄ in	249	260	202	158	163	175	120.5	84
107, 125	BVE 25 38	1 ¹ / ₄ in	216	240	168	167	172	214	137	84
160, 180	BVE 25 38	1 ¹ / ₄ in	249	260	202	167	172	214	137	84

Ports

Designation	Port for	Version	Standard	Size	Maximum pressure [bar]	State
A, B	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852	M22 x 1.5; 14 deep	30	Χ
		BVD25, BVE25	DIN 3852	M27 x 2; 16 deep	30	Х
Br	Brake release, reduced high pressure	L	DIN 3852	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852	M12 x 1.5; 12.5 deep	420	Х
M _A , M _B	Measuring pressure A and B		ISO 61493	M12 x 1.5; 12 deep	420	Х

Counterbalance valve BVD and BVE

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8)	 length B1+B2+B3
2 screws (6, 7)	length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

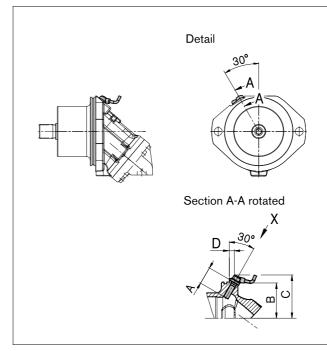
Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 16 deep

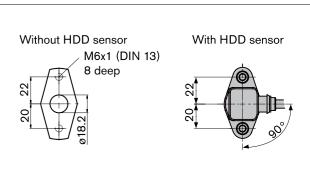
¹⁾ Minimum required thread reach 1 x ø-thread

Speed sensors

The versions A2FE...U and A2FE...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring.


On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated. The sensors measures the speed and direction of rotation.


Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

Version "V"

Sizes 28 to 180 with DSA sensor

View X

Size	28, 32	45	56, 63	80, 90	107, 125	160, 180	250
Number of teeth	38	45	47	53	59	67	78
DSA A Insertion dept	th (tolerance ± 0.1) 32	32	32	32	32	32	32
B Contact surfa	ce 66	On requ	uest				
С	On requ	uest					
D	12.3	On requ	uest				

²⁾ Including sandwich plate

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

See the following examples 1 to 5.

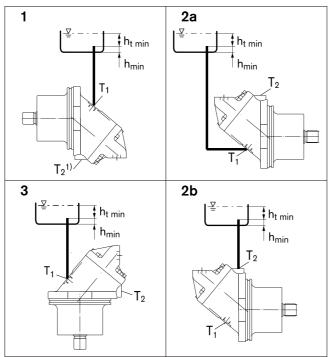
Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Installation position	Air bleed	Filling
1	_	T ₁
2	_	T ₁ (sizes 28 to 180)
3	_	T ₁
4	(L ₁)	T_1 , (L_1)
5	(L ₁)	T ₂ , (L ₁)
6	(L ₁)	T ₁ , (L ₁)

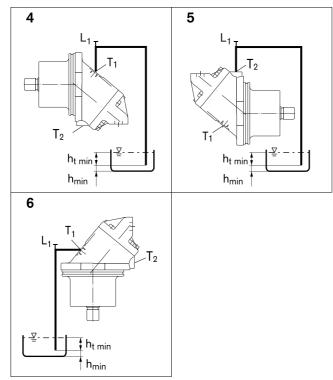
L₁ Filling / air bleed

T₁, T₂ Drain port


h_{t min} Minimum required immersion depth (200 mm)

h_{min} Minimum required spacing to reservoir bot-

tom (100 mm)


Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Axial Piston Fixed Motor SA2FM Series

Size 5

Nominal pressure/Maximum pressure

315/350 bar

Size 10 to 180

Nominal pressure/Maximum pressure

400/450 bar

Open and closed circuits

Contents

Ordering code for standard program ————— 2
echnical data ——————————————————————————————————
Dimensions sizes 5 to 180 2
Flushing and boost pressure valve ———————4
Pressure-relief valve ————————————————————————————————————
Counterbalance valve BVD 4
Speed sensors ———————————————————————————————————
nstallation instructions ————————————————————————————————————

All original manufacturers'names, part numbers and description are for reference purposes only and it does not imply that any Part listed is the product of these manufacturers. All rights reserved by SKS

Hydraulic fluid

Mineral oil and HFD.

SA2F

Ordering code for standard program

	SA2F		М		/	6		W	ı	٧			
01	02	03	04	05		06	07	08		09	10	11	12

01	HFB, HFC hydraulic fluid
	Axial piston unit
02	Bent-axis design, fixed

	Drive shaft bearing	5 to 180	
2	Standard bearing (without code)	•	
3	Long-life hearing	_	ı

	Operating mode	
04	Motor (plug-in motor A2FE)	М

		Size (NG)																
	Geometric displacement																	
	05		5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180

	Series	
06		6
	Index	

07	NG10 to 180	1
	Direction of rotation	
08	Viewed on drive shaft, bidirectional	w

	Seals																	
09	FKM (fluor-caoutchouc)																	٧
	Drive shafts	5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	
	Splined shaft	_	•	•	•	•	•	•	_	•	•	•	•	•	•	•	•	Α
	DIN 5480	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Z
10	Parallel keyed shaft		•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	В

	Mounting flange	es	5 to 180	
11	ISO 3019-2	4-hole	•	В

ullet = Available O = On request -= Not available

Ordering code for standard program

	SA2F		М		/	6		W	-	٧			
01	02	03	04	05		06	07	08		09	10	11	12

	Port plates for service lines			5	10-16	23	28, 32	45	56,63	80,90	107-125	160-180	
	SAE flange ports	01	0	-	-	•	•	-	_		-	_	010
	A and B at rear		7	_	-	_	-	-	-	-	-	_	017
	SAE flange ports	02	0	-	_	-	-	-	•	•	-	_	020
	A and B at side, opposite		7	_	_	_	-	-	•	•	_	-	027
			9	_	-	_	-	_	_	_	-	-	029
	Threaded ports A and B at side, opposite	03	0	-	•	_	-	-	_	ı	ı	-	030
	Threaded ports A and B at side and rear	04	0	-	•	-	-	-	_	-	-	-	040
	SAE flange ports A and B at bottom (same side)	10	0	-	-	-	-	-	•	•	-	-	100
12	Port plate BVD with 1-level pressure-	17	1	-	-	-	-	ı	-	•	ı	-	171 178
	relief valves	18	8	_	-	-	-	ı	-	•	ı	-	181
	Port plate with	19	1	_	-	-	-	ı	•	•	ı	_	191
	pressure-relief valves		2	_	_	_	-	_	•	•	-	-	192
	Valves		i										
	Without valve		0										
	Pressure-relief valve (without press		1										
	Pressure-relief valve (with pressure	boo	st	faci	lity)					2			
	Flushing and boost pressure valve,	moı	ınte	ed						7			
	Counterbalance valve BVD mounte	d								8			
	Flushing and boost pressure valve,	inte	gra	ted						9			

	Speed sensors	5 to 16	23 to 180	
	Without speed sensor (without code)	•	•	
	Prepared for HDD speed sensor	-	•	F
13	HDD speed sensor mounted	-	•	Н
	Prepared for DSA speed sensor	_	0	U
	DSA speed sensor mounted	-	0	٧

■ = Available	O = On request	– = Not available

Conical shaft

Technical data

Table of values (theoretical values, without efficiency and tolerances; values rounded)

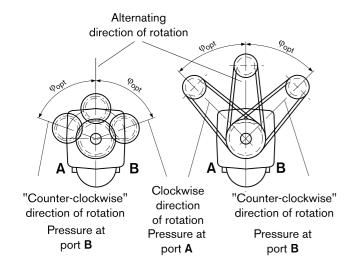
lable of valu		NC		E	10	10	16	00	00	20	45	EC	60	00
Size		NG	2	5	10	12	16	23	28	32	45	56	63	80
per revolution	nt geometric, n	V _g	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed maxin	mum ¹⁾	n _{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
		n _{max} 2)	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
Input flow ³⁾														
at n _{nom} an	nd V_g	q _V	L/min	49	82	96	128	144	177	202	255	281	315	362
Torque ⁴⁾														
at V_g and	$\Delta p = 350 \text{ bar}$	T	Nm	24.7 ⁵⁾	57	67	89	128	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	T	Nm	_	66	76	102	146	179	204	290	357	401	512
Rotary stiffne	ess	С	kNm/rad	0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Moment of ir rotary group		J_{GR}	kgm ²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum angular acceleration		α	rad/s ²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Case volume	Э	٧	L		0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Mass (appro	Mass (approx.) m		kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
Size														
Size		NG	-	90	107	125	160	180						
	nt geometric, n	NG V _g	cm ³	90 90	107 106.7	125 125	160 160.4	180 180						
Displacemen	n		-	l										
Displacemer per revolution	n	V _g	cm ³	90	106.7	125	160.4	180						
Displacemer per revolution	n	V _g	cm ³	90 4500	106.7	125 4000	160.4 3600	180 3600						
Displacement per revolution Speed maxim	n num ¹⁾	V _g	cm ³	90 4500	106.7	125 4000	160.4 3600	180 3600						
Displacemer per revolutio Speed maxir Input flow ³⁾	n num ¹⁾	$\frac{n_{\text{nom}}}{n_{\text{max}}^{2)}}$	cm ³ rpm rpm	90 4500 5000	106.7 4000 4400	125 4000 4400	160.4 3600 4000	180 3600 4000						
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} an Torque ⁴⁾	n num ¹⁾	$V_g \\ \frac{n_{nom}}{n_{max}^{2)}}$ q_V	cm ³ rpm rpm	90 4500 5000	106.7 4000 4400	125 4000 4400	160.4 3600 4000	180 3600 4000						
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} an Torque ⁴⁾	mum ¹⁾	$\begin{array}{c} V_g \\ \\ \underline{n_{nom}} \\ \\ \underline{n_{max}^{2)}} \\ \\ q_V \\ \\ T \end{array}$	cm ³ rpm rpm L/min	90 4500 5000 405	106.7 4000 4400 427	125 4000 4400 500	160.4 3600 4000 577	180 3600 4000 648						
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} an Torque ⁴⁾	mum ¹⁾ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	$\begin{array}{c} V_g \\ \\ \underline{n_{nom}} \\ \\ \underline{n_{max}^{2)}} \\ \\ q_V \\ \\ T \end{array}$	cm³ rpm rpm L/min	90 4500 5000 405 501	106.7 4000 4400 427 594	125 4000 4400 500	160.4 3600 4000 577 893	180 3600 4000 648 1003						
Displacemer per revolutio Speed maxir Input flow ³⁾ at n _{nom} an Torque ⁴⁾ at V _g and	mum ¹⁾ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for	$\begin{array}{c} V_g \\ \\ \underline{n_{nom}} \\ \\ n_{max}^{2)} \\ \\ q_V \\ \\ T \\ T \\ \end{array}$	rpm rpm L/min Nm	90 4500 5000 405 501 573 9.14	106.7 4000 4400 427 594 679 11.2	125 4000 4400 500 696 796 11.9	160.4 3600 4000 577 893 1021	180 3600 4000 648 1003 1146 18.2						
Displacemer per revolution Speed maximum Input flow at n _{nom} and Torque to the Torque	mum ¹⁾ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ ess hertia for	$\begin{array}{c} V_g \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	rpm rpm L/min Nm Nm kNm/rad	90 4500 5000 405 501 573 9.14	106.7 4000 4400 427 594 679 11.2	125 4000 4400 500 696 796 11.9	160.4 3600 4000 577 893 1021 17.4	180 3600 4000 648 1003 1146 18.2						
Displacemer per revolution Speed maximum and Input flow ³⁾ at n _{nom} and Torque ⁴⁾ at V _g and Rotary stiffned Moment of irrotary group Maximum and Insulation Insu	mum ¹⁾ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for	$\begin{array}{c} V_g \\ \hline n_{nom} \\ \hline n_{max}^{2)} \\ \hline q_V \\ \hline T \\ T \\ c \\ J_{GR} \\ \end{array}$	rpm rpm L/min Nm Nm kNm/rad kgm²	90 4500 5000 405 501 573 9.14 0.0072	106.7 4000 4400 427 594 679 11.2 0.0116	125 4000 4400 500 696 796 11.9 0.0116	160.4 3600 4000 577 893 1021 17.4 0.0220	180 3600 4000 648 1003 1146 18.2 0.0220						

SA2FM Series <<<

Technical data

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)


Size		NG		5	5	10	10	12	12	16	23	23
Drive shaft		Ø	mm	12	12	20	25	20	25	25	25	30
Maximum radial force	Fq	F _{q max}	kN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4
at distance a (from shaft collar)	a	a	mm	12	12	16	16	16	16	16	16	16
with permissible torq	ue	T_{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
≜ permissible pressu	ıre ∆p	Δp_{perm}	bar	315	315	400	400	400	400	400	400	400
Maximum axial force	- . Th	+F _{ax max}	N	180	180	320	320	320	320	320	500	500
	F _{ax} ±	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2
Size		NG		28	28	32	45	56	56	56	63	80
Drive shaft		Ø	mm	25	30	30	30	30	30	35	35	35
Maximum radial force	Fq	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
at distance a (from shaft collar)	a	а	mm	16	16	16	18	18	18	18	18	20
with permissible torq	ue	T _{max}	Nm	179	179	204	290	357	294	357	401	512
	ıre ∆p	Δp_{perm}	bar	400	400	400	400	400	330	400	400	400
Maximum axial force	- . Mh	+F _{ax max}	N	500	500	500	630	800	800	800	800	1000
	F _{ax} ±±	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6
Size		NG		80	80	90	107	107	125	160	160	180
Drive shaft		Ø	mm	35	40	40	40	45	45	45	50	50
Maximum radial force	Fq	F _{q max}	kN	11.1	11.4	11.4	13.6	14.1	14.1	18.1	18.3	18.3
at distance a (from shaft collar)	a	a	mm	20	20	20	20	20	20	25	25	25
with permissible torq	ue	T _{max}	Nm	488	512	573	679	679	796	1021	1021	1146
	ıre ∆p	Δp_{perm}	bar	380	400	400	400	400	400	400	400	400
Maximum axial force	<u>.</u> . Пh	+F _{ax max}	N	1000	1000	1000	1250	1250	1250	1600	1600	1600
	r _{ax} ±∓	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	10.6	10.6	10.6	12.9	12.9	12.9	16.7	16.7	16.7

Technical data

Effect of radial force F_{α} on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	Форt	φ _{opt}
5 to 180	± 70°	± 45°

Determining the operating characteristics

nput flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot n_v}$$
 [L/min]

Speed
$$n = \frac{q_V \cdot 1000 \cdot \eta_V}{V_g}$$
 [min⁻¹]

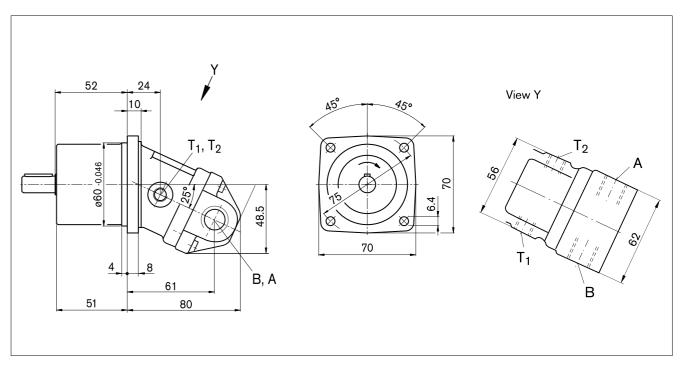
Torque
$$T = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p \cdot \eta_t}{600} [kW]$$

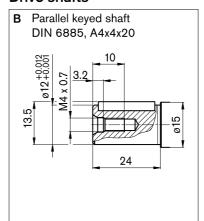
V_g = Displacement per revolution in cm³

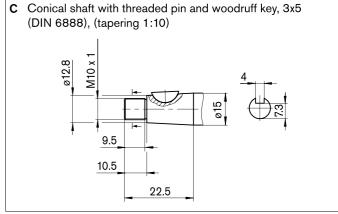
 Δp = Differential pressure in bar

n = Speed in rpm


η_ν = Volumetric efficiency

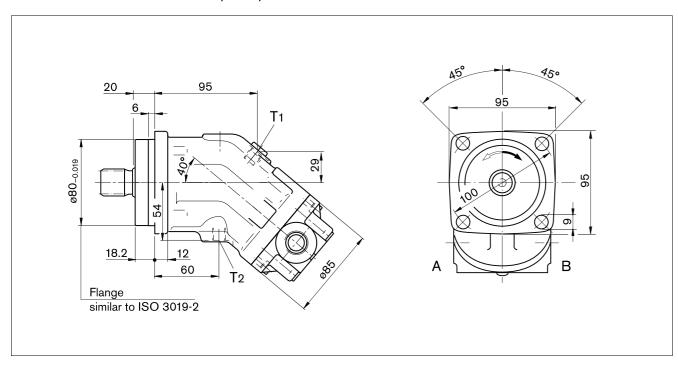
 η_{mh} = Mechanical-hydraulic efficiency


 $_{t}$ = Total efficiency (η_{t} = $\eta_{v} \cdot \eta_{mh}$)

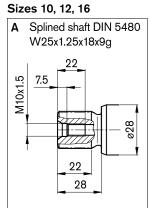


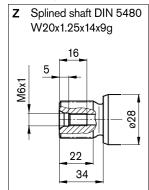
Dimensions size 5

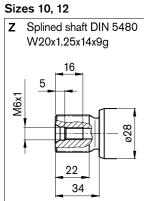
Drive shafts

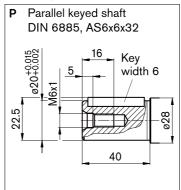


Ports


Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar]	State
A, B	Service line	DIN 3852	M18 x 1.5; 12 deep	350	0
T ₁	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T ₂	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

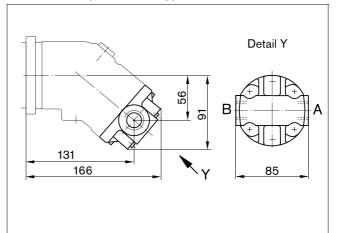

SA2FM Series <<<


Dimensions sizes 10, 12, 16

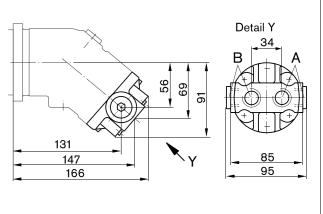

Drive shafts

Sizes 10, 12

Ports

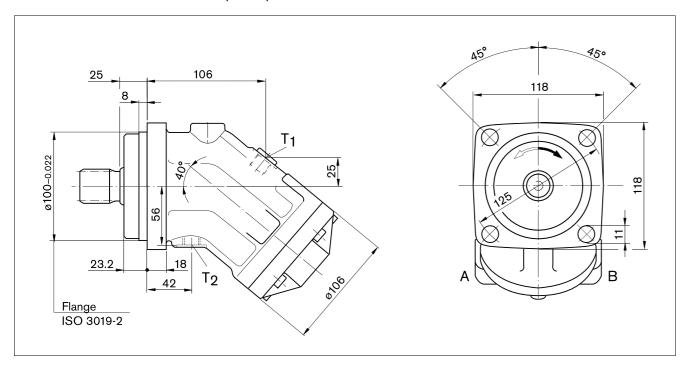

Designation	Port for	Standard	Size	Maximum pressure [bar]	State
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852	M12 x 1.5; 12 deep	3	Χ
T ₂	Drain line	DIN 3852	M12 x 1.5; 12 deep	3	0

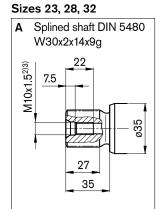

Dimensions sizes 10, 12, 16

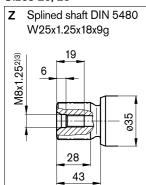

Location of the service line ports on the port plates

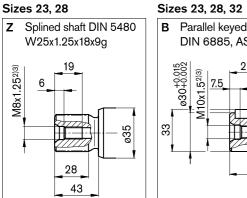
03 - Threaded ports at side, opposite

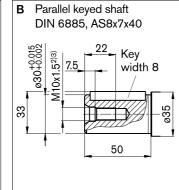
(K) SKS HYDRAULICS

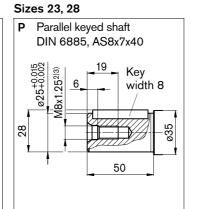




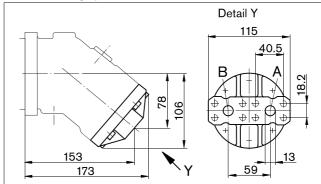

Plate	Designation	Port for	Standard	Size	Maximum pressure [bar]	State
03	A, B	Service line	DIN 3852	M22 x 1.5; 14 deep	450	Ο
04]	Service line	DIN 3852	M22 x 1.5; 14 deep	450	1x O each


Dimensions sizes 23, 28, 32

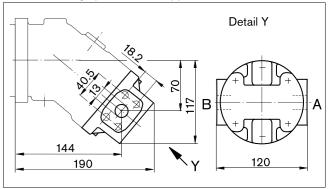



Drive shafts

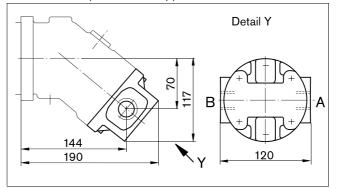
Ports

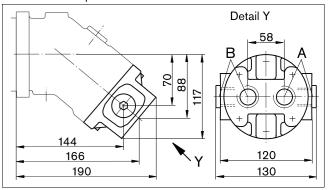

Designation	Port for	Standard	Size	Maximum pressure [bar]	State
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852	M16 x 1.5; 12 deep	3	Χ
T ₂	Drain line	DIN 3852	M16 x 1.5; 12 deep	3	0

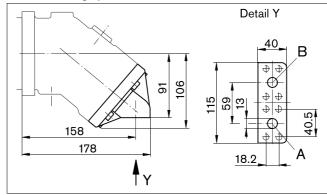
(K) SKS HYDRAULICS


Dimensions sizes 23, 28, 32

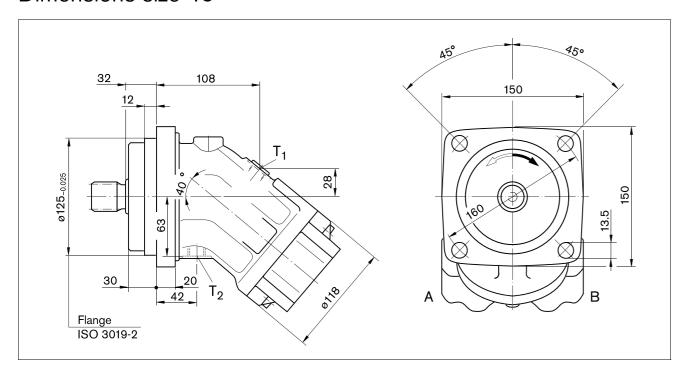
Location of the service line ports on the port plates


01 - SAE flange ports at rear

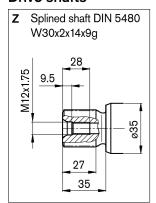

02 - SAE flange ports at side, opposite

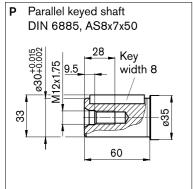

03 - Threaded ports at side, opposite

04 - Threaded ports at side and rear



10 - SAE flange ports at bottom (same side)

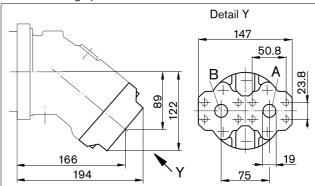


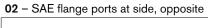

Plate	Designation	Port for	Standard	Size	Maximum pressure [bar]	State
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 DIN 13	1/2 in M8 x 1.25; 15 deep	450	Ο
03		Service line	DIN 3852	M27 x 2; 16 deep	450	0
04		Service line	DIN 3852	M27 x 2; 16 deep	450	1x O each

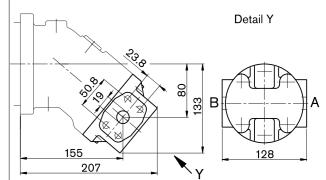
Dimensions size 45

Drive shafts

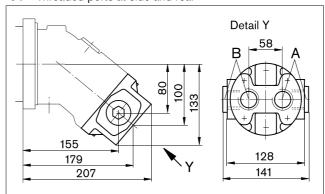
Ports

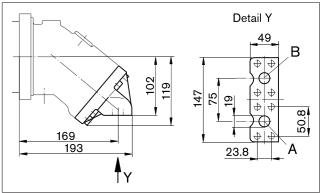

Designation	Port for	Standard	Size	Maximum pressure [bar]	State
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852	M18 x 1.5; 12 deep	3	Х
T ₂	Drain line	DIN 3852	M18 x 1.5; 12 deep	3	0


Dimensions size 45

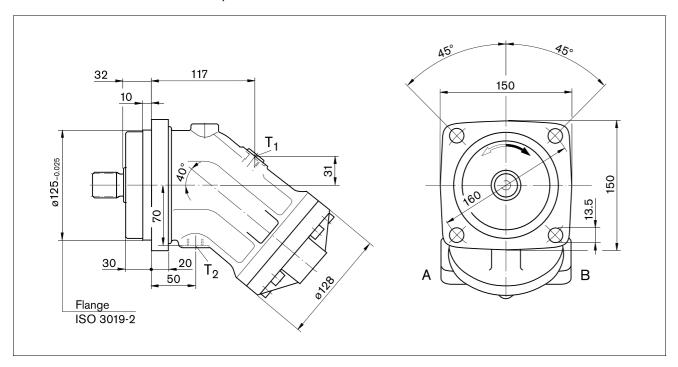

(K) SKS HYDRAULICS

Location of the service line ports on the port plates

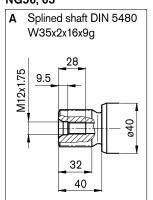

01 - SAE flange ports at rear

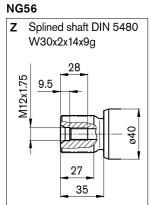


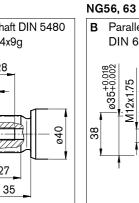
04 - Threaded ports at side and rear

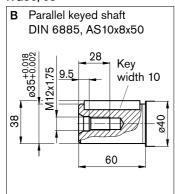


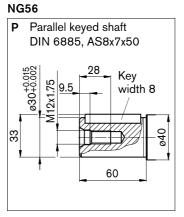
10 - SAE flange ports at bottom (same side)


Plate	Designation	Port for	Standard	Size	Maximum pressure [bar]	State
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04]	Service line	DIN 3852	M33 x 2; 18 deep	450	1x O each

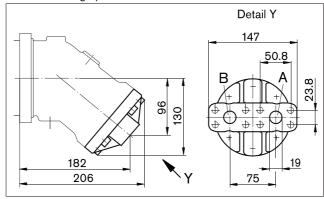

Dimensions sizes 56, 63

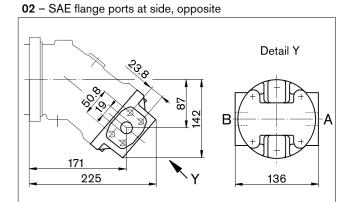



Drive shafts

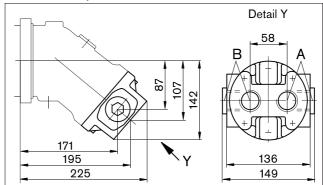

NG56, 63

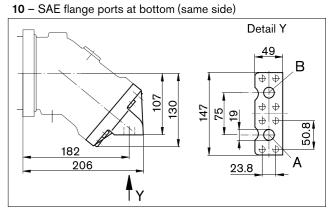
Ports


Designation	Port for	Standard	Size	Maximum pressure [bar]	State
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852	M18 x 1.5; 12 deep	3	Χ
T ₂	Drain line	DIN 3852	M18 x 1.5; 12 deep	3	0


(K) SKS HYDRAULICS

Dimensions sizes 56, 63


Location of the service line ports on the port plates


01 - SAE flange ports at rear

04 - Threaded ports at side and rear

Plate	Designation	Port for	Standard	Size	Maximum pressure [bar]	State
01, 02, 10	A, B	Service line Fastening thread A/B	SAE J518 DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
04		Service line	DIN 3852	M33 x 2; 18 deep	450	1x O each