Coseismic weakening and depth penetration of
large earthquakes
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« Potential dynamic weakening of stable (creeping) areas, thoughts about 2011 Tohoku
* Penetration of large events below the seismogenic zone
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Basic model of a plate-boundary strike-slip fault

Numerical simulation methodology for long-term fault slip punctuated by

earthquakes with all inertial (wave) effects resolved: Lapusta, Rice, Ben-Zion,
Zheng, JGR (2000); Lapusta and Liu JGR (2009); Noda and Lapusta, JGR (2010)
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Low-velocity fault frictional resistance: Rate-and-state friction

Laboratory-derived (Dieterich, Ruina, Tullis, Marone, and others)
for low slip velocities (~ 10 —10-3 m/s) compared to the seismic range (~ 1 m/s).
Numerous successful applications: earthquake nucleation, postseismic slip, earthquake

triggering, aftershocks, slow slip transients, repeating earthquakes.
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Key concept: Velocity-strengthening vs. velocity-weakening friction

Velocity-strengthening: Velocity-weakening:
Friction increases with slip velocity | Friction decreases with slip velocity
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Conveniently explains
observed variations in coupling

Locked segments
+ velocity-weakening friction
« earthquakes

Slowly moving (creeping) areas
5 + velocity-strengthening friction
« “barriers” to earthquakes
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Low-velocity fault frictional resistance: Rate-and-state friction

Unique tool for simulating earthquake cycles in their entirety,
from accelerating slip in slowly expanding nucleation zones
to dynamic rupture propagation (turns into ~ linear slip weakening)
to post-seismic slip and interseismic creep
to fault restrengthening between seismic events
to steady slip in velocity-stengthening areas.
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A number of additional important effects

Rapid shear heating during seismic slip and associated changes, mostly weakening
Dilatancy (another state variable) and associated pore-pressure effects
Quasi-static shear heating and associated changes, similar to rate dependence
Dependence on the shear layer structure and composition

Issues with the proper state-evolution law; multiple state variables

Evolution of shear resistance in response to normal stress changes

Fluid effects on rate-and-state parameters

Recent experiments with velocity weakening even at high temperatures



Friction coefficient

Rate and state friction is not the whole story:
Dramatic weakening occurs at high slip rates

Plate motion

Typical slow-slip values

1
I
I
1
I
I -------
T ommn Fmmmmmmsmmmmmmmmmmmeoe e e Jam
i l H
I o | e ® T 1 0%
- I @ ¢
i i ° T foomuay a
: 0.2 v
________ 4—-——-——-—-' —— - -
I 10 < ¢
V¥ Peridotite 20 MPa [Di Toro et al. 2006b] ¥V Gabbro 15.5MPa [Nielsen et al. 2008]
O Tonalite 20 MPa [Di Toro et al. 2006b] O Clay-rich gouge 0.6 MPa [Mizoguchi et al. 2007)
04} A Granite 2 MPa [Dieterich 1978] B Aplite 5 MPa [Di Toro et al. unpublished]
Westerly granite 5 MPa [Di Toro et al. 2004] a] Feldspar 5 MPa [Di Toro et al. unpublished)
A. Westerly granite 5 MPa [Di Toro et al. unpublished) (@ Feldspar1.3 MPa [Di Toro et al. unpublished]
B Sementinite 1.5 MPa [Hirose and Bystricky 2007] & Carrara marble 12-15 MPa [Han et al. 2007; Han et al. in prep]
B Sermentinite 2.5 MPa [Hirose and Bystricky 2007] { Carrara marble <10 MPa [Han et al. 2007; Han et al. in prep)]
B Sermpentinite 24.5 MPa [Hirose and Bystricky 2007] € Carrara marble 1.25 MPa [Di Toro unpublished]
02 Bl Sementinite 6.5 MPa [Hirose and Bystricky 2007] & Cakite gouge [Shimamoto and Logan 1981]
O Serpentinite 15.5 MPa [Hirose and Bystricky 2007] 4 Cakite gouge 100 MPa [Morrow et al. 2000]
® Sermentinite 25 MPa bare surface [Reinen et al. 1992] €@ Dolomite marble 75 MPa [Weeks and Tullis 1985]
O Sementinite 25 MPa gouge-present [Reinen et al. 1992] & Dolomite marble 7.2 MPa [Han et al. in prep]
@ Quartz sandstone 18.7 MPa [Dieterich 1978] ¢ Dolomite marble 12.2 MPa [Han &t al. in prep]
0.0 \4 Nova::ulite 5MPa [Di Tlom et al. 2004) | l’ Dolomite gougle [Shimamoto an;d Logan 1981] l
~11 -10 -9 -8 =7 -6 -5 —4

Log slip-rate (m s™)

Wibberley, Yileding, and Di Toro, 2008




Intuitive View:
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Is dynamic weakening consistent
with magnitude-independent stress drops?
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Proposed physical mechanisms behind the dramatic weakening
Shear heating mechanisms

Flash heating of contact asperities at small slips (Lim and Ashby, 1987,
Tsutsumi and Shimamoto, 1997; Rice, 1999, 2006; Goldsby and Tullis, 2011; and others)

Thermal pressurization of pore fluids in the fault zone (Sibson, 1973; Lachenbruch,
1980; Mase & Smith, 1985, 1987; Andrews, 2002; Rice, 2006; and others)

Thermal decomposition and subsequent fluid pressurization
(Han, Shimamoto, Hirose, Ree, Ando, 2007; Brantut et al., 2010; and others)

Partial or full melting of the shearing layer (Jeffreys, 1942; McKenzie and Brune,
1972; Tsutsumi and Shimamoto, 1997; Hirose and Shimamoto, 2005; and others)

Other possibilities

Lubrication by silica gel layer (Goldsby and Tullis, 2003; Di Toro et al., 2004)

Normal stress reduction from elastic mismatch (Weertman, 1963, 1980;

Andrews and Ben-Zion, 1997)
Superplasticity, nanoparticle lubrication (Green et al., 2015; De Paola et al., 2015)

Acoustic fluidization, interface vibrations (Melosh, 1979, 1996; Brune et al., 1993)

Elastohydrodynamic lubrication (Brodsky and Kanamori, 2001)



Friction-induced shear heating, and associated fluid effects
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Fluid pressure, p
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« Fluids in the fault zone (water, CO,) expand
* Pore fluid pressure p may increase, depending on permeability

* Fault resistance 7 decreases (dynamic weakening) or not



Lab measurements of fault properties for 1999 (Mw 7.6) Chi-Chi earthquake

Its fault properties have been
measured in the lab using
samples obtained by drilling
(Tanikawa and Shimamoto, 2009).

North :

Velocity-strengthening,
“stable”

Lower permeability,
susceptible to dynamic

South : weakening through
Velocity-weakening, pore fluid pressurization
susceptible to nucleation
Higher permeability Caution:

The data is based on samples
from shallow depths (200-300 m).



Variations in radiation for the 1999 (M, 7.6) Chi-Chi earthquake

Ma et al. [2000]
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Fault area with lower slip
generated more high-frequency
radiation [e.g. Ma et al., 2003].

Qualitatively the same
behavior as in Tohoku-Oki! o
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Observations from 2011 Mw 9.0 Tohoku-Oki earthquake
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« Extremely large unexpected
seismic slip (> 50 m) in shallower
areas which had been assumed to be
stably moving (and hence barriers to
earthquake rupture).

* Prior smaller (~Mw 8) events at the
bottom of the subducting interface.

* Areas of lower slip generated more
high-frequency radiation.

 Complex pattern of rupture: first
down, then up, then down again (lde
et al., Science, 2011).

We can qualitatively reproduce all
these observations in a single
physical model with dynamic

weakening of creeping regions

Noda and Lapusta, Nature, 2013



Model with simple geometry but
realistic, lab-measured fault rheology
and its correspondence to Tohoku-OKki
“and Chi-Chi earthquakes
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Model with simple geometry but
realistic, lab-measured fault rheology
and its correspondence to Tohoku-OKki
,~and Chi-Chi earthquakes
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Qualitative match of long-term earthquake sequence behavior

Accumulation of fault slip
- A number of smaller events in the left patch

per each event spanning both patches
(as for both Tohoku-Oki and Chi-Chi faults)

(a) Dashed lines: every 50 years
160 Solid lines: every 1 sec

- Large coseismic slip in the right patch which
can also be creeping
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Frequency contrast between the two patches as observed

Snapshots of slip rate in the 26th event
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Patch A has smaller slip but more high-
frequency content, reproducing
observations for Chi-Chi [Ma et al., 2003]
and Tohoku-Oki earthquake [Meng et al,
2011].

Slip rate history in the 26th event
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What if dynamic rupture dynamically penetrates into the deeper creeping

fault extensions? Evidence of such penetration?




Observation: Seismic quiescence (absence of microseismicity)
on some fault segments, i.e. on San Andreas Fault in California

A Historical and prehistorical earthquakes on the SAF and SJF
1245 Jiang and Lapusta, Science, 2016
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Microseismicity is expected at the transition between locked
(seismogenic) zone and creeping deeper extensions ...

Shear stress

Seismogenic Zone
nucleation

Z= locked

S5 | («<10"m/s) interseismic stress
E o concentration
IR I L ———— -

2 8 .

&% | creeping stable sliding

E L (~10"m/s)

| Depth

Deeper creeping fault extensions of mature faults are supported

by a number of observations: deep tectonic tremor (Shelly, 2010);
afterslip needed to explain postseismic deformation (Bruhat et al., 2011);
Studies of exhumed faults (Cole et al., 2007).



... Unless large earthquakes penetrate into the creeping regions
and put locked/creeping transition below the seismogenic zone

=
Stress
Seismogenic Zone
velocity-weakening (VW)
[ locked J (earthquake nucleation)
x conventional model
\ [ creepingJ Deeper Extension
velocity-strengthenin S
locked after ty 9 g (VS)
large events potentially unstable (DW)

at seismic slip rates

P ———————— ———— — — —

deeper-penetration model
(maximum rupture extent?)

[ creeping ]
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Jiang and Lapusta, Science, 2016



A Fault models C Spatial patterns

SZ-confined rupture (M1) _ deeper rupture (M2)
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No microseismicity at the base of the seismogenic zone may point
to deeper penetration of large events due to dynamic weakening
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Slip model/seismicity from Barbot and Lapusta,
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Shallower rupture => microseismicity at depth
Deeper rupture => seismic quiescence

Slip model from Elliott et al., 2007
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What controls the depth of earthquake slip?

Conventional assumption: seismic slip arrests at
a fixed depth near locked/creeping transition
(or VWI/VS rate-and-state boundary)

Our hypothesis: Arresting depth is affected by
co-seismic weakening and hence depends on
both fault properties and rupture evolution

Hydraulic diffusivity (m?2/s)
105 104 103 10

0 ]
Vs Y

VW & TP & FH

For thermal pressurization of pore fluids:

* Hydraulic diffusivity decreases with depth
(e.g., Wibberley & Shimamoto, 2003)

* Shearing zone width increases with depth
from mm to meters (e.g., Cole et al., 2007)

Depth (km)
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* The competition, together with the shear
heating imposed by the rupture dynamics, 15
determines the depth of seismic slip.
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Variable slip depth in space and for different events
No Iateral variations in fault properties
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Depth of slip increases with earthquake slip

slip varies along strike

20 arresting depth increases with
—  Maximum slip max earthquake slip
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Depth dependence of shear zone width
Is quite important

Both earthquake arresting depths and patterns are affected
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Creeping regions may host large seismic slip due to co-seismic weakening,
reproducing:

« A range of observations from the area of the 2011 Tohoku earthquake, qualitatively

* Quiescence of some major strike-slip faults (due to deeper large events)

* No microseismicity on mature segments may indicate deeper large events *

The depth limit of seismic slip depends on both fault properties and rupture

dynamics:

* For thermal pressurization of pore fluids, competition between decreasing permeability
and increasing shear-zone width, with shear heating determined by rupture properties.

« Even for fault properties constant in time and uniform along strike, the depth limit of
seismic slip varies along strike and changes from one large earthquake to the next.

* The depth extent of seismic slip increases with slip.

* Similar behaviors should occur for other co-seismic weakening mechanisms *

Questions

« Shear-zone width at depth? Its evolution with seismic slip? Effect of inelastic off-fault behavior?

« Applicability of poroelasticity, def. of effective stress (Hirth and Beeler, 2015; Beeler et al., 2016)?
« Other weakening mechanisms (melting, thermal decomposition, superplasticity)?
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V constant, 6, =L/V, 7, /0=f,=f,+(@=-b)In(V/V))

a—b >0, velocity strengthening
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Factors that favor VS in experiments:

High temperatures ( f 300 C)
Aseismic faults below certain depth

Low effective normal stress
Shallow VS layers

Certain types of rocks and fault gouge

a—b <0, velocity weakening
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Seismic slip in large enough regions

Aseismic slip in smaller regions

Estimates of the critical size
(Rice and Ruina, 1983; Rice, Lapusta, Ranjith,
2001; Rubin and Ampuero, 2005):

« shear modulus x char. slip

h oc
normal stress x F'(a, b)
¥ L ¥ L
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h-a) ™ Gb-ay/b



Long-term fault behavior in such models:
deeper penetration of seismic slip in large events
that changes in time and varies along strike
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