Site-Specific MCE_R Response Spectra for

L.A. Region from 3-D Numerical Simulations & NGA West2 GMPEs

C.B. Crouse

AECOM

UGMS Meeting: November 8, 2017

MCE_R Spectra Developed by the SCEC

Utilization of Ground-Motion Simulations Committee (UGMS)

Formed in 2013

UGMS Committee Members

- C. Crouse Chair
- T Jordan SCEC
- N. Luco USGS
- R. Bachman
- J. Hooper MKA
- J. Bielak CMU
- C. Kircher
- M. Hudson AMEC
- M. Lew AMEC
- R. Hamburger SGH

- A. Frankel USGS
- N. Abrahamson PG&E
- R. Graves USGS
- F. Naeim
- C. Hazelton CSC
- P. Somerville AECOM
- Jack Baker Stanford
- J. Anderson UNR
- S. Rezaeian USGS
- C. Goulet SCEC

3-D Simulation Approach

- 1. Use UCERF2 M_w recurrence models
- Do simulations
 ↓
 H1 & H2 accel. a(t)
 ↓
 response spectra, S_a(T)
 ↓
 median S_a(T) & σ_{In}
- Proceed with PSHA/DSHA (C. 21, ASCE 7-16)
- 4. MCE_R Response Spectra

CyberShake Computational Platform used for Simulations

- 3-D physics-based model of fault rupture and wave propagation for S. CA EQs
- 40,000 regional earthquakes (M_W ≥ 6) simulated from UCERF2.0 (2008)
 - Multiple hypocenter and slip models for each given M_W on given fault
 - e.g., 140 models for M_w6.7 on Northridge fault (~ no. for other M_w on this fault)
- 440,000 ground-motion simulations for each of ~300 sites

Simulated Motions computed at ~300 CyberShake Sites

Advantages of 3D Simulations for L.A. Region

Basin Structure, Vp, Vs, & Q – Well known for modeling propagation of longer period waves.

Validation of Simulations

Validated against recordings from moderate M events.

UGMS has done limited validations for 1994 M_w 6.7 Northridge earthquake.

M8 Simulation on San Andreas

Site-Specific Approach using NGA West2 GMPEs

- 1. Use UCERF3 M_w recurrence models
- 2. Select groundmotion eqns.
 - Four NGA West 2 eqns.
 - basin depth $(Z_{1.0} \text{ or } Z_{2.5})$
 - Shear-wave vel. (V_{S30})
 - Substitute Z_{1.0}, Z_{2.5}, V_{S30}
 values into eqns.
- Proceed with PSHA/DSHA
 (C. 21, ASCE 7-16)
- 4. MCE_R Response Spectra

2013 NGA West2 Equations with Basin Depth Terms

- Abrahamson et al Z_{1.0}
- Boore et al Z_{1.0}
- Campbell & Bozorgnia Z_{2.5}
- Chiou & Youngs Z_{1.0}

Basin Profile

Why New MCE_R are Improvement to MCE_R from Chapter 11 ASCE 7-16

- Site-Specific for Los Angeles Region
- Better job in accounting for:
 - local & regional geology
 - fault directivity & fling (CyberShake)
 - 3-D effects of fault rupture & basin structure on ground motion (CyberShake)

Why New MCE_R are Improvement to MCE_R from Chapter 11 ASCE 7-16

- Eliminates need for F_a & F_v tables, which:
 - Don't directly account for basin effects
 - Have step changes at site-class boundaries
 - Are constant for each site class, which covers broad range of Vs30

MCE_R Response Spectra

■ CyberShake (T = 2 – 10 sec)

■ NGA West2 GMPEs (0 – 10 sec)

Determination of MCE_R Response Spectra, T = 2 - 10 sec

- Computed MCE_R from both approaches at selected sites in L.A. area
- Developed procedure for combining two MCE_R
- Checked final MCE_R for many L.A. area sites

Transform S_a to PSV

$$PSV = (T/2\pi)S_a$$

MCE_R PSV for 7 Sites to Illustrate Trends

Weighted Averaging of MCE_R Response Spectra

COO (Compton) - Deep Basin

MCE_R: COO (Compton) - Deep Basin

MCE_R: COO (Compton) - Deep Basin

Line 1

300

MCE_R: s383 (Palos Verdes) - rock site

Line 2

300

MCE_R: s510 (Seal Beach) - deep basin

Intermediate Goal of UGMS

- Site-Specific MCE_R for L. A. area
 - Alternative to ASCE 7-16 "maps" (Ch 22) for Southern California and F_a & F_v (Ch 11)
 - Resource to city/county officials & geotechnical & structural engineers

- SCEC/UGMS look-up tool
 - ~ USGS web app tool

SCEC/UGMS Look-Up Tool

Provides site-specific MCE_R, DE & PGA_M

Beta version available

Future Additions to Look-Up Tool

- Deaggregation Data
 - M-Distance
 - Fault

- Acceleration Time Histories
 - San Andreas M~8 events

■ BSE-1 & BSE-2 (ASCE 41-13)

