

The long-run computational challenges for using 3D simulations in seismic hazard analysis

CyberShake Overview

Reciprocity in CyberShake

- CyberShake uses reciprocity to reduce computational cost
- Impulse is placed at site of interest
- 2 Strain Green Tensor simulations are performed
- In post-processing, SGT time-series is convolved with slip time history at each point on fault surface to produce seismogram

Non-linearity breaks reciprocity

Non-Linear CyberShake: Approximation

- Pseudo-nonlinearity: continue with current workflow, adding additional non-linear approximations
- New kinematic rupture descriptions could approximate non-linear source effects
- Additional post-processing in reciprocity step could approximate nonlinear crustal effects
- Could calibrate against suites of full non-linear simulations to generate pseudo-nonlinear models

Non-linear CyberShake: Hybrid

- Modify CyberShake to include forward simulations
- Converting CyberShake to forward-only is expensive
 - Most recent Study 17.3 used 21.6 million core-hours
 - Running forward-only would have used ~1.1 billion
- Less than 10% of sources account for more than 90% of the hazard
 - Even less than 10% at the rupture level
- Combine forward-simulation of a small subset of events with reciprocity for the majority
 - 3% forward (15,000 events) + 97% reciprocity = 51 million core-hours

Event Classification

- Challenge becomes how to determine which events should be forward-simulated
- For previously-run sites, can use previous disaggregation results

```
Source# % Contribution
                          TotExceedRate
                                          SourceName
000112
       28.44
                     1.1660034E-4
                                      San Jacinto; SBV+SJV+A+C
000110 08.01
                     3.284774E-5
                                      San Jacinto; SBV+SJV
000111 07.77
                     3.1859796E-5
                                      San Jacinto; SBV+SJV+A
000094 07.09
                     2.9080562E-5
                                      S. San Andreas; SM+NSB+SSB+BG+CO
000109 06.39
                     2.6198057E-5
                                      San Jacinto; SBV
000079 04.62
                     1.894212E-5
                                      S. San Andreas; NSB+SSB+BG+CO
      02.97
                     1.21608555E-5
000097
                                      S. San Andreas; SSB+BG+CO
000093
       02.77
                     1.1355708E-5
                                      S. San Andreas; SM+NSB+SSB+BG
000130 02.38
                     9.758109E-6
                                      San Jacinto (SB to C)
000115 02.10
                     8.5908005E-6
                                      San Jacinto; SBV+SJV+A+CC+B+SM
000086 02.05
                     8.392931E-6
                                      S. San Andreas; PK+CH+CC+BB+NM+SM+NSB
000114 01.79
                     7.3234287E-6
                                      San Jacinto; SBV+SJV+A+CC+B
```

• • •

Event Classification

- For new sites / velocity models, can predict intensity measure and therefore predict disaggregation results
- What GMPEs do
- Can tolerate a moderate amount of error, especially by being inclusive
- Use machine learning to classify events into forward-simulation or reciprocity
 - Very preliminary work suggests this is promising
- Could mesh well with UCERF 3 ERF option
 - Classify into (GMPE, reciprocity, forward)

Conclusions

- Want to continue to integrate new developments into CyberShake
- Nonlinearity will be important especially at higher frequencies
- Pseudo-nonlinearity or hybrid approaches may provide path forward
- Questions?