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Facial Landmark Detection + Attribute Prediction 
 
 
 
 
 
 
Original data has 5 facial landmark (left eye, right eye, nose, 
left mouth corner and right mouth corner) and 4 attributes. 
 
 
 
 
 

Smiling	 Gender	 Pose	 Glass	
S/NS	 M/F	 0,	±30,	±60	 W/NW	

Split Architecture: Facial landmark detection using auxiliary 
tasks of attribute detection. The last fully connected layer is 
split.  Joint loss function  
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Introduction 

Methodology 

Result 

§  Auxiliary tasks degrade the convergence of the main task 
(FLD) by overfitting the training set. An early stopping 
mechanism can be applied. (when validation error below 
some threshold) 

§  Cross stitch is applied in all the layers for better 
generalization, however depending on the tasks it might 
not converge well. Extensive tuning of parameters is 
necessary to get the intended result 

§  Weight regularization with cross stitch gives better result 

Conclusion & Future Work 

q  Multi task deep learning: learning multiple tasks  using 
shared representations in a supervisory environment 

q  Existing multi-task learning methodologies rely on splitting 
the network at a particular layer depending on the task. They 
do not generalize well across various tasks. 

Dataset 

Multi-task learning using auxiliary tasks 
Problem Formulation 
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Multi-task Learning using cross-stitch network 
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Cross-stitch network: two networks are cross-stitched to share 
representations using learnable cross-stitch unit 

Proposed Weight Regularization:  Introducing loss in the 
weights of two multi-tasking streams to relate the weights 

Objective: Explore split architecture and cross-stitch  
on facial landmark dataset. Regularize weight to share 
representation by introducing a mutual weight 
regularization loss. 

Ø  Cross stitch unit combines representations from both 
networks through learnable parameters. 

Ø   Similarity in tasks implies relatedness in weights of the 
networks, hence weight regularization might be helpful. 

Weight regularization in cross-stitch 

Pre-processing: 
Bounding box regression (40×40) 
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Facial landmark : left eye, right eye, 
nose, left mouth corner, and right 
mouth corner 
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Proposed weight regularization in cross-stitch: mean error rate 
and failure rate 
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Comparison of different model variants of FLD: mean error 
rate and failure rate 

Mean error: L2 norm of difference in 
prediction and ground truth normalized 
w.r.t. bounding box width.  
Failure rate: mean error larger than 5% 


