Aeration Management: Key to Grain Quality and Safety

Working Together To Keep Grain In Condition and Workers Safe

Objective for Storage:

To maintain quality of stored products <u>after</u> harvest and <u>before</u> the end use...on the dinner table!

Dilemma of Storage:

Quality <u>NEVER</u> improves during storage!

Why do we use aeration?

Prevent Mold, Insects, Grain Deterioration

- Maintain uniform temperatures, moisture accumulation, condensation
- Keep temperatures as low as feasible
- Aerate grain after a fumigation

Aeration is a part of a bigger system

News Flash: Employee

"fell into a grain bin" ...Really????!!!!

- Grain won't come out of the bin
- Material stuck on walls
- Bridge breakthrough
- Walking down grain with auger running

When does it happen?

- Cleaning out a bin
- Breaking up chunks for reclaim system
- Dislodging bridges or walls of grain
- Moving a stuck sweep auger
- Fumigation, top dressing
- Equipment/structural repairs

Moldy Grain = Unsafe Working Conditions

http://jonermining.co.za/ wp-content/uploads/2016/06/silo.png

Mold/fungus/mycotoxins ... >60% RH, >60F and >16% MC

Fungal species	Mycotoxin produced	Moisture content (%) for mycotoxin production	Moisture content (%) for fungal growth		
Aspergillus flavus	Aflatoxin B1	17.6-19	19.2		
Aspergillus parasiticus	Aflatoxin B1	19	20.2		
Aspergillus ochraceus	Okratoxin A	16.5	19.6		
Penicillium patulum	Patulin	18	27		
Penicillium exapansum	Patulin	18.3-19	30		
Penicillium aurantiogriseum	Okratoxin A	18.5-19.6	20.2-22.0		
Penicillium verrucosum	Ochratoxin A	18	18.8-19.8		
Fusarium proliferatum	Fumonisin B1	20.5	25		
Fusarium verticilliodes	Fumonisin B1	20.5	25		

Two kinds of molds

- Field molds
- Storage molds
- Presence of inoculum on the grain coming into the bin
- Initial grain moisture content and moisture throughout storage
- Weed seed, broken seed, plant debris, insects/rodents
- Storage temperature
- Storage length
- Leaky structures
- Poor aeration/drying management

Summarized from Magan et al 2003.

Table 2. Safe Storage Period for Soybeans (Days).

Soybean	Soybean Moisture Content (% Wet Basis)												
Temperature (°F)	10	11	12	13	14	15	16	18	20	22			
90	>365	>365	251	49	27	16	10	5	4	3			
85	>365	>365	336	66	36	21	14	7	5	3			
80	>365	>365	>365	87	47	28	18	9	6	4			
75	>365	>365	>365	117	63	38	24	12	8	5			
70	>365	>365	>365	157	85	50	32	16	10	7			
65	>365	>365	>365	210	113	67	43	22	13	9			
60	>365	>365	>365	278	150	89	57	28	17	11			
55	>365	>365	>365	>365	226	134	86	38	22	14			
50	>365	>365	>365	>365	339	202	130	50	29	19			
45	>365	>365	>365	>365	>365	303	195	66	37	24			
40	>365	>365	>365	>365	>365	>365	293	88	48	30			
35	>365	>365	>365	>365	>365	>365	>365	115	62	39			

^{*}It should be mentioned that these values assumed about 0.5% dry matter loss.

Use all of our tools to keep grain in good condition (and safer)

- Clean Grain, Bins and Equipment
- Seal/Repair bins
- Empty bin treatments
- Load grain carefully
- Fumigate when necessary and appropriate
- Manage aeration
- Monitor for problems

Core of fines

Foreign Material (FM)

Broken grain Weed seeds

Solution:

Coring or spreading grain

- Over-Filling
 - Poor head space ventilation
 - Spoiled grain on silo wall
 - Impossible to monitor grain surface

Why Is This a Really Bad Idea?

Headspace Condensation

 Caused by temperature differences between grain and outside air.

15F temperature difference = condensation

 Use power exhaust fans and aeration system to move moisture out and equalize temperatures

<u>CAUTION:</u> Vents MUST be sized for aeration system and must be open.

When to Run Fans???

Generally:

- Uniformly cool all the grain in the bin (depends on fan size...usually 150 hours for 0.1 cfm/bu)
- Aerate as soon as possible during and after binning.
 Reduce temps to less than 60F or as cool as possible
- In late fall, run fans for a week to get grain as cool as possible.
- Use fans to remove odors occasionally
- Cover fans when not in use.
- Understand Equilibrium Moisture Content

EMC...What's it all about?

		Soybean Equilibrium Moisture Content																		
		Relative Humidity (%)																		
		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95
	20	1.2	2.2	3.1	4.0	4.9	5.8	6.7	7.7	8.6	9.6	10.7	11.8	13.1	14.4	15.9	17.6	19.6	22.3	26.2
	25	1.2	2.2	3.1	4.0	4.8	5.7	6.6	7.5	8.5	9.5	10.5	11.6	12.9	14.2	15.6	17.3	19.3	22.0	25.9
	30	1.2	2.1	3.0	3.9	4.8	5.6	6.5	7.4	8.4	9.3	10.4	11.5	12.7	14.0	15.4	17.1	19.1	21.7	25.5
	35	1.2	2.1	3.0	3.8	4.7	5.5	6.4	7.3	8.2	9.2	10.2	11.3	12.5	13.8	15.2	16.8	18.8	21.4	25.2
	40	1.2	2.1	2.9	3.8	4.6	5.5	6.3	7.2	8.1	9.1	10.1	11.1	12.3	13.6	15.0	16.6	18.6	21.1	24.9
	45	1.1	2.0	2.9	3.7	4.5	5.4	6.2	7.1	8.0	8.9	9.9	11.0	12.1	13.4	14.8	16.4	18.3	20.8	24.6
(°F)	50	1.1	2.0	2.8	3.7	4.5	5.3	6.1	7.0	7.9	8.8	9.8	10.8	11.9	13.2	14.6	16.2	18.1	20.6	24.3
ıre	55	1.1	2.0	2.8	3.6	4.4	5.2	6.0	6.9	7.8	8.7	9.6	10.7	11.8	13.0	14.4	16.0	17.8	20.3	24.0
emperature	60	1.1	1.9	2.8	3.6	4.3	5.1	5.9	6.8	7.6	8.6	9.5	10.5	11.6	12.8	14.2	15.7	17.6	20.1	23.7
be	65	1.1	1.9	2.7	3.5	4.3	5.1	5.9	6.7	7.5	8.4	9.4	10.4	11.5	12.7	14.0	15.5	17.4	19.8	23.5
em	70	1.1	1.9	2.7	3.5	4.2	5.0	5.8	6.6	7.4	8.3	9.3	10.2	11.3	12.5	13.8	15.4	17.2	19.6	23.2
-	75	1.0	1.9	2.6	3.4	4.2	4.9	5.7	6.5	7.3	8.2	9.1	10.1	11.2	12.3	13.7	15.2	17.0	19.3	23.0
	80	1.0	1.8	2.6	3.4	4.1	4.9	5.6	6.4	7.2	8.1	9.0	10.0	11.0	12.2	13.5	15.0	16.8	19.1	22.7
	85	1.0	1.8	2.6	3.3	4.0	4.8	5.6	6.3	7.1	8.0	8.9	9.9	10.9	12.0	13.2	14.8	16.6	18.9	22.5
	90	1.0	1.8	2.5	3.3	4.0	4.7	5.5	6.3	7.1	7.9	8.7	9.6	10.6	11.7	17.0	14.5	16.2	18.5	22.0
	95	1.0	1.8	2.5	3.2	3.9	4.7	5.4	6.2	7.0	7.8	8.7	9.6	10.6	11.7	43.0	14.5	16.2	18.5	22.0
	100	1.0	1.7	2.5	3.2	3.9	4.6	5.3	6.1	6.9	7.7	8.6	9.5	10.5	11.6	12.9	14.3	16.0	18.3	21.7

Other charts available at:

https://www.ag.ndsu.edu/graindrying/documents/GrainEquilibriumMoistureContentCharts.pdf

mperature and Insect ion Fan Control System

Tx: Time delay relays

Ax: Aeration Fan Motor Starter Coils (#1- #8: auxiliary sw. contacts)

L: Control Circuit power wire-115V (Red)

K: Neutral circuit wire (white)

N: Neutral circuit wire (white)

Autor Manual: Autornatic' Manual positions of the switch

Numbers in (8) are recommended timer settings in seconds. This provides 8 second delays between startup of group of fans

Aeration Controller

Parts List

Serial Number	Part Name	Number	Model Number	Manufacturer
1	Enclosure (12' x 10' x5')	1	A1210CH	Hoffman Enclosures Inc
2	Line Voltage Thermostat	1	2E206	Dayton Mfg.
3	Socket Relay Base	3	5X852F	Dayton Mfg.
4	Time Delay Relays	3	1A263	Schneider Electric
5	Hour Meter Coil	1	20017	Hobbs AC Hour Meter
6	20 Amp Toggle Switch (SPDT)	1	91-0001	McGill Electrical Product Group
7	6-pole Terminal Strips	2	6YH65	Grainger

Monitoring: Communication with your grain

Why monitor?

→ You can 't manage what you don't know about.

The Fix is cheaper than the consequences.

- Temperature Cables (some have "MC" sensors)
- Physically Observing
- Sampling
- How about insects?

Monitoring

Molds = Clumps, Big Danger And Less Money!!!

Temperature: Cables or Fan Exhaust Air

No Cables? Takes about 150 hours to cool an entire bin to outside air temperatures.

Moisture: Sampling, Cables, Smell, Sight, and Hotspots

CO₂ Monitoring: Early warning sign of biological activity

<u>Caution:</u> High moisture loads don't blend by themselves.

How "Much" air is needed?

- Steel Bins: 1/10th cfm/bushel at least
- Concrete Silos and Flat Storage: 1/20th cfm/bushel at least

Tip:

More air = faster cooling to prevent mold development.

1/5th cfm/bu = 75 hrs for uniform temperature

Goals: Quality Product and Safe Employees

Good Grain Condition Management

- Condition going in the bin
- Aeration management
- Monitoring
 - Temperature Cables
 - Air Quality Monitors
- Recordkeeping
- Marketing poor quality quickly
- Fumigate when needed

Training...are we doing it right?

- Do employees know what to look for?
- Do they understand why they need to monitor or be observant?
- Do they understand the need to report problems?
- Do they understand how to be safe?
- Do they understand what happens when they violate safety rules?

"New" Equipment/Techniques

Fixing Problems from Outside

- Fumigating when appropriate
- Break up chunks
- Dislodge stuck grain
- Zero Entry Sweeps
- Aeration control/monitoring systems

Process Changes

- Lock outno exceptions!
- Air quality testing
- Written housekeeping procedures
- Written bin entry and cleaning procedures
- Discipline policy

Use all of our tools to keep grain in good condition, workers safe, and \$\$\$ in our pockets

- ✓ Clean
- ✓ Seal/Repair
- ✓ Load Carefully
- ✓ Manage Air
- ✓ Monitor
- ✓ Train

- ✓ Market
- ✓ Plan Ahead
- ✓ Be Safety-Minded
- ✓ Keep Current on New Equipment/Techniques

Questions?

Jcarol@okstate.edu Oklahoma State University

Home of World-Class Stored Product Research

Stillwater, Oklahoma