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Abstract

The Internet of Things is an $800 billion industry, with over
8.4 billion connected devices online, and spending predicted
to reach nearly $1.4 trillion by 2021 [1]. Most of these
devices need to connect to the Internet to function. However,
current solutions such as cellular, WiFi, and Bluetooth are
suboptimal: they are too expensive, too power hungry, or too
limited in range.

Helium is a decentralized machine network that enables ma-
chines anywhere in the world to wirelessly connect to the
Internet and geolocate themselves without the need for power-
hungry satellite location hardware or expensive cellular plans.
Powering the network is a blockchain with a native protocol
token incentivizing a two-sided marketplace between cover-
age providers and coverage consumers. With the introduction
of a blockchain, Helium injects decentralization into an in-
dustry currently controlled by monopolies. The result is that
wireless network coverage becomes a commodity, fueled by
competition, available anywhere in the world, at a fraction of
current costs.

Helium’s secure and open-source primitives enable develop-
ers to build low-power, Internet-connected machines quickly
and cost-effectively. Helium has a wide variety of applica-
tions across industries and is the first decentralized machine
network of its kind.

1. Introduction

The world is becoming decentralized. A multitude of plat-
forms, technologies, and services are moving from cen-
tralized proprietary systems to decentralized, open ones.
Peer-to-peer networks such as Napster (created by Helium
founder Shawn Fanning) [2] and BitTorrent paved the way
for blockchain networks and crypto-currencies to be built.
Now Bitcoin, Ethereum, and other blockchain networks have
shown the value of decentralized transaction ledgers. Exist-
ing Internet services such as file storage, identity verification,
and the domain name system are being replaced by modern
blockchain-based versions. While software-level decentraliza-
tion has moved quickly, physical networks are taking longer

to affect. These networks are more complicated to decentral-
ize as they often require specialized hardware to function.

Helium is a wide-area wireless networking system, a block-
chain, and a protocol token. The blockchain runs on a new
consensus protocol and a new kind of proof, called Proof-
of-Coverage. Miners who are providing wireless network
coverage in a cryptographically verified physical location and
time submit proofs to the network, and the miners submitting
the best proofs are elected to an asynchronous byzantine fault
tolerant consensus group at a fixed epoch. The members of the
consensus group receive encrypted transactions submitted by
other miners and forms them into blocks at an extremely high
transaction rate. In addition to the blockchain protocol, the
Helium Wireless protocol, WHIP, provides a bi-directional
data transfer system between wireless machines and the
Internet via a network of independent providers that does
not rely on a single coordinator, where: (1) machines pay to
send & receive data to the Internet and geolocate themselves,
(2) miners earn tokens for providing network coverage, and
(3) miners earn fees from transactions, and for validating the
integrity of the network.

Note: This whitepaper represents a continuous work in
progress. We will endeavor to keep this document current
with the latest development progress. As a result of the on-
going and iterative nature of our development process, the
resulting code and implementation is likely to differ from
what is represented in this paper.

We invite the interested reader to peruse the Helium GitHub
repo at https://github.com/helium as we continue to
open-source various components of the system over time.

1.1 Key Components

Helium is built around the following key components:

Proof-of-Coverage We present a computationally inexpen-
sive Proof-of-Coverage that allows miners to prove they
are providing wireless network coverage. We anchor these
proofs using a Proof-of-Serialization that allows miners
to prove they are accurately representing time relative to
others on the network in a cryptographically secure way.
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Blockchain Network We demonstrate an entirely new purpose-
built blockchain network built to service the Wireless
Protocol and provide a system for authenticating and
identifying machines, providing cryptographic guarantees
of data transmission and authenticity, offer transaction
primitives designed around the wireless protocol, and
more.

Helium Consensus Protocol We present a novel consensus
protocol construction that creates a permissionless, high
throughput, censor-resistant system by combining an
asynchronous Byzantine Fault Tolerant protocol with
identities presented via Proof-of-Coverage.

Wireless Protocol We introduce a new open-source and
standards-compliant wireless network protocol, called
WHIP, designed for low power machines over vast areas.
This protocol is designed to run on existing commodity ra-
dio chips available from dozens of manufacturers with no
proprietary technologies or modulation schemes required.

Proof-of-Location We outline a system for interpreting the
physical geolocation of a machine using WHIP without
the need for expensive and power-hungry satellite location
hardware. Machines can make immutable, secure, and
verifiable claims about their location at a given moment
in time which is recorded in the blockchain.

1.2 System Overview

• Helium is a Decentralized Machine Network built around
a new wireless protocol (WHIP) on a purpose-built
blockchain with a native token.

• Machines take the form of hardware containing a radio
chip and firmware compatible with WHIP, and spend
tokens by paying Miners to send data to and from the
Internet.

• Miners earn tokens by providing wireless network cover-
age via purpose-built hardware which provides a bridge
between WHIP and Routers, which are Internet applica-
tions.

• Machines store their private keys in commodity key-
storage hardware and their public keys in the blockchain.

• Miners join the network by asserting their satellite-derived
location, a special type of transaction in the blockchain,
and staking a token deposit.

• Miners specify the price they are willing to accept for
data transport and Proof-of-Location services, and Routers
specify the price they are willing to pay for their Ma-
chine’s data. Miners are paid once they prove they have
delivered data to the Machines’ specified Router.

• Miners participate in the creation of new blocks in the
blockchain by being elected to an asynchronous Byzantine
Fault Tolerant consensus group.

• Miners are rewarded with newly minted Helium for blocks
that are created while they are part of the consensus group.

• A Miner’s probability of being elected to the consensus
group at a given epoch is based on the quality of the
wireless network coverage they provide.

• The blockchain employs Proof-of-Coverage to guarantee
that miners are honestly representing the wireless network
coverage they are creating.

[Figure 1] shows a visual representation of the Helium
network.

2. The Helium DMN

We introduce the Helium Decentralized Machine Network
(DMN). The DMN provides wireless access to the Internet
for machines by way of multiple independent miners, and
outlines a network and wireless protocol specification by
which participants in the network should conform. Routers
pay this network of miners for sending data to and from the
Internet, and miners are rewarded with newly minted tokens
for providing network coverage and delivering machine data
to the Internet.

2.1 Participants

There are three types of participants in the network: Machine,
Miner, or a Router.

Machines send and receive encrypted data from the Internet
using hardware compatible with the Helium wireless
protocol, called WHIP [Section 2.4]. Data sent from
machines is fingerprinted, and that fingerprint stored in
the blockchain.

Miners provide wireless network coverage to the network
via purpose-built hardware, called gateways [Section 2.5],
which provide a long-range bridge between WHIP ma-
chines and the Internet. Users join the network as miners
by purchasing or building a gateway that conforms to the
wireless protocol, and staking a token deposit proportional
to the density of other miners operating in their area [Sec-
tion 5.3.3]. Miners participate in the Proof-of-Coverage
[Section 3] process to prove that they are continuously
providing wireless network coverage that machines can
use. Miners join the network with a score [Section 3.3.4]
that diminishes as blocks pass without valid proofs being
submitted. At a given epoch, a new group of miners are
elected to a consensus group which mine new blocks in the
blockchain and receive the block reward and transaction
fees for any transactions included in the block once mined.

2



Gateway

Machine
Token Token

Coverage

GatewayGateway

GPS

Blockchain

Router

Router

Token Exchange

Peer-to-Peer

GPS/GNSS

Authentication

Figure 1. System Overview

As a miners score drops their probability of being elected
to the consensus group and mining blocks diminishes.

Routers are Internet applications that purchase encrypted
machine data from miners. In locations with a sufficient
number of miners, routers can pay several miners to obtain
enough copies of a packet to geolocate a machine without
needing satellite location hardware, which we call Proof-
of-Location. Routers are the termination point for machine
data encryption. Machines record to the blockchain which
routers miners should send their data to, such that any
gateway on the network can send any machines data to the
appropriate router. Routers are responsible for confirming
to gateways that machine data was delivered to the correct
destination and that the miner should be paid for their
service.

2.2 Blockchain

The Helium blockchain is a distributed ledger designed
to provide a cost-effective way to run application logic
core to the operation of a DMN, store immutable machine
data fingerprints, and furnish a transaction system. The
Helium blockchain is an immutable append-only list of
transactions which achieves consensus using the Helium
Consensus Protocol [Section 6]. Users internal and external
to the DMN have access to the blockchain, which is a new
protocol built from scratch specifically for the DMN.

The blockchain consists of blocks which contain a header and
a list of transactions. There are several kinds of transactions,
outlined in [Section 5].

At a given epoch a given block consists of:

Block Version
Block Height

Previous Block Hash
Transactions 1..n Merkle Hash

Threshold signature by the current consensus group

As the Proof-of-Coverage [Section 3] is valuable to the net-
work, miners are required to submit their proofs at regular in-
tervals. All miners have a score which decays over time, and is
boosted by submitting Proofs-of-Coverage to the blockchain.
At a fixed epoch, a HoneyBadgerBFT [4] consensus group
of the highest scoring miners is elected. For that epoch, all
transactions are encrypted and submitted to the consensus
group for inclusion in the blockchain. The consensus group
is responsible for decrypting transactions using threshold
decryption, agreeing on the validity and ordering of transac-
tions, forming them into blocks, and appending them to the
blockchain for which the members of the consensus group
receive a reward.

As the consensus group is validating transactions with-
out having to provide an associated block-proof (beyond
a threshold signature), there is practically no settlement time,
and the transaction throughput is extremely high compared
to a Nakamoto Consensus blockchain such as Bitcoin or
Ethereum. The Helium Consensus Protocol is outlined in
detail in [Section 6].
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2.3 Physical Implementation

In addition to the blockchain network, Helium is a physi-
cal wireless network instantiation. The participants in the
wireless network can be thought of as follows:

Wireless Protocol The wireless network uses a new open
wireless protocol, called WHIP. WHIP is a long-range,
low-power, wireless network protocol suitable for use with
commodity open-standards hardware. WHIP compatible
hardware can communicate over many square miles in
dense urban environments or hundreds of square miles in
rural settings. WHIP compatible hardware can also last for
several years using standard batteries. WHIP uses strong
public key cryptography and authentication occurs using
the Helium blockchain, and data is encrypted end-to-end
between the machine and corresponding Internet-hosted
router.

Gateways Gateways are physical network devices that pro-
vide wide-area wireless coverage and participate in the
blockchain network. Gateways transmit data back and
forth between routers on the Internet and machines while
generating Proofs-of-Coverage for the blockchain network
[Section 3]. Gateways are manufactured using commodity
open-standards components with no proprietary hardware.
Gateways can co-operate and geolocate machines using
the wireless network without any additional required hard-
ware. Each Gateway can support thousands of connected
machines, and provide coverage over many square miles.
Miners operating gateways specify the price they are will-
ing to accept for transport and Proof-of-Location services
for machines.

Machines Machines exist in the form of hardware prod-
ucts that contain a WHIP-compatible radio transceiver
and communicate with gateways on the wireless network.
WHIP is designed to facilitate low power data transmis-
sion and reception, so typically machines exist in the form
of battery-powered sensors that can operate for several
years using standard batteries (although mains-powered
machines also work quite well). Machines can exist in a va-
riety of forms, depending on the product or use case, and a
variety of transmission and reception strategies can be em-
ployed to optimize for transmission/reception frequency
or battery life. Machine manufacturers are encouraged
to use hardware-based key storage which can securely
generate, store, and authenticate public/private key pairs
without leaking the private key.

In this section, we expand on the components of the wireless
network.

2.4 Wireless Protocol (WHIP)

2.4.1 Motivation

Several Low Power Wide Area Network (LPWAN) technolo-
gies are available today. These wireless technologies focus
on creating long-range, low-power Internet communication
for sensors and other smart machines. Typically these tech-
nologies trade throughput for range, with data rates as low
as 18 bits per second (bps) and range measured in miles. In
comparison, a typical WiFi network has significantly higher
data rates but ranges limited to only a few dozen feet. Several
of these new technologies, such as LoRa [6] and RPMA [7],
have gained good traction and there are many commercial
products available compatible with these systems. However,
we believe a decentralized machine network should use non-
proprietary protocols and modulation schemes and that par-
ticipants in this ecosystem should have the freedom to choose
between competing hardware vendors. We do not consider
an open alliance built on top of proprietary hardware to be an
acceptable compromise. While there are many open-standard
wireless networking stacks, such as IEEE 802.15.4 [8] used
in the first generation of Helium wireless products, none meet
our extremely long range and low power criteria. It is this lack
of open solutions that drove the creation of a new protocol.

2.4.2 Outline

We introduce a new open-source Low Power Wide Area
Network (LPWAN) protocol called WHIP. WHIP is a highly
secure, long range, low power, bi-directional wireless network
protocol that is compatible with a wide range of existing radio
transceivers operating in the sub-GHz unlicensed frequency
spectrum. Authentication with the wireless network uses
modern public-key encryption and NIST P-256 ECC key
pairs, with the public keys for all participants stored in the
blockchain.

The modulation format is simple and widely supported, easy
to implement and has excellent resistance to RF noise. There
are dozens of vendors implementing radio transceivers com-
patible with WHIP, such as Texas Instruments, Microchip,
and Silicon Labs.

WHIP is a narrowband wireless protocol which creates
several channels within the unlicensed spectrum and employs
frequency hopping to switch between channels. Typically
frequency hopping requires a complex time-synchronized
system that is limited in capacity. However, machines using
WHIP do not need to coordinate with gateways on channel
selection as gateways are capable of hearing all channels
within the available spectrum at any time. We choose narrow-
band to accomplish the following goals:

Spectral Efficiency It is necessary to operate within unli-
censed RF spectrum very efficiently. RF is a shared, lim-
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ited resource, and therefore a focus on efficiency to in-
crease capacity and improve robustness is a must.

Co-Existence Performance As the number of machines and
networks increase, the ability to operate in noisy RF envi-
ronments without interference is a critical consideration.

Range Narrowband allows for extremely long-range com-
munications, with data rates that scale both up and down
depending on the density of gateways.

2.4.3 Implementation

WHIP supports several data rates, channel bandwidths, and
error-correction techniques. Gateways and machines dynami-
cally negotiate the combination of these options using a sig-
nalling packet delivered at the lowest bandwidth and symbol
rate to ensure maximum range for the initial communication.

The full WHIP specification will be made available by the
Decentralized Machine Network Alliance in the coming
months.

2.5 Gateways

Gateways are physical network machines operated by miners
that create wireless RF coverage over wide areas. They trans-
mit data back and forth between routers on the Internet and
machines on the network, process blockchain transactions,
and create Proofs-of-Coverage for the blockchain network
[Section 3]. Gateways can connect to the Internet using any
TCP/IP capable backhaul, such as Ethernet, WiFi or Cellular.
Each gateway contains a radio frontend chip capable of listen-
ing to several MHz of radio spectrum at a time and can hear all
network traffic transmitted within that spectrum. In this con-
figuration modulation and demodulation is done in software,
which is typically referred to as a Software Defined Radio
(SDR). The benefit of this structure is that gateways can hear
any machine traffic transmitted within the frequency range,
and no synchronization between the gateway and machine
needs to occur. This allows machines to remain inexpensive
and relatively simple and reduces wireless protocol overhead.
If a miner wishes to minimize their gateway hardware costs,
synchronized frequency hopping schemes are also permitted
within the specification as a cheaper alternative to a more
expensive radio frontend.

Gateways require a GPS or GNSS receiver to obtain accurate
position and date/time information. This satellite-derived
location is used in conjunction with other techniques to verify
that a gateway is, in fact, providing wireless network coverage
in the location it claims. Because satellite location messages
are easy to fabricate and do not necessarily prove that wireless
RF coverage is being created, multiple mechanisms are
required to validate this work as described in more detail
in [Section 3].

Satellite location information is also correlated with packet
arrival events to provide Proof-of-Location for machines if
multiple gateways observe the same packet. This allows ma-
chines to locate themselves without requiring a GPS/GNSS
transceiver physically, and therefore provide accurate loca-
tion data at a fraction of the battery life and cost of competing
methods. This method is described in detail in [Section 4].

Helium Systems Inc. will make both a complete open-source
reference design and a finished product available at network
launch.

2.6 Machines

A machine is any wireless hardware capable of communicat-
ing with gateways via WHIP. WHIP is designed to facilitate
low power data transmission and reception, so typically ma-
chines would exist in the form of battery-powered sensors
that can function for several years using standard batteries.

WHIP is designed such that machines can be manufactured
using commodity hardware available from a wide variety
of vendors with a very low-cost bill of materials (BOM).
The technology in modern radio transceivers, such as the
Texas Instruments CC1125 or STMicroelectronics S2-LP,
enables exceptionally long-range network systems that can
be built without the need for proprietary modulation schemes
or physical layers. Some of these radios are available for
around $1 at reasonable volumes.

It is recommended that each machine use the Microchip
ECC508A or equivalent hardware-based key storage device,
which can securely generate, store, and authenticate pub-
lic/private NIST P-256 ECC [3] key pairs without leaking
the private key. Also, a wide array of defense mechanisms
prevent logical attacks on the encrypted data between the
key storage device and its host machine, along with physical
protections on the security device itself. Users program their
key storage device as part of the onboarding process defined
in the WHIP wireless specification using a defined API.

2.7 Routers

Routers are Internet-deployed applications that receive pack-
ets from machines via gateways and route them to appropriate
destinations such as an HTTP or MQTT endpoint. Routers
also act as full nodes for the blockchain network [Section 5.5].

Routers serve several functions on the network, including:

• Authenticating machines with the wireless network

• Receiving packets from gateways and routing them to the
Internet

• Delivering downlink messages, including OTA updates,
to machines via gateways
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• Providing delivery confirmations to ensure transport trans-
actions are honest

• Providing authentication and routing mechanisms to third-
party cloud services such as Google Cloud Platform or
Microsoft Azure

• Storing and making available a full copy of the blockchain
ledger

When a gateway receives a data packet from a machine on the
network, it queries the blockchain to determine which router
to use given the machine’s network address. Anyone is free to
host their own router and define their machines’ traffic to be
delivered there by any gateway on the network. This ability
allows users of the network to create VPN-like functionality
whereby encrypted data is delivered only to a router (or set of
routers) that they specify and can optionally host themselves.

Routers can implement a system called a Channel which han-
dles the authentication and routing of data to a specific third
party Internet application, such as Google Cloud Platform
IoT Core. These channel implementations can take advan-
tage of a machine’s onboard hardware security to create a
secure, hardware-authenticated connection to a third party
which would otherwise be difficult to implement directly on
an embedded microcontroller. Helium will make available an
open source reference implementation of a Channel that can
be used to build additional interfaces to Internet services.

Helium Systems Inc will also host a high-availability cloud
router for anyone to use and also provides and maintains
an open-source router that is available either as source code
or a binary package for a variety of operating systems and
distributions.

The protocol specification required for implementing a router
is defined in the WHIP Wireless Specification document that
will be made available by the Decentralized Machine Network
Alliance in the coming months.

3. Proof-of-Coverage & Proof-of-Serialization

In the Helium network, miners must prove that they are pro-
viding wireless network coverage that machines are able to
use to communicate with the Internet. Miners do this by
complying with the Proof-of-Coverage protocol which the
blockchain network and other miners audit and verify. We
use a Proof-of-Serialization to ensure that miners are cor-
rectly representing their time in relation to others on the net-
work, and obtain cryptographic proof of dishonest behavior.
Several components of the Helium network, such as Proof-
of-Coverage, use Proof-of-Serialization as a cryptographic
“anchor” that root those occurrences with a cryptographic
time proof. With a combination of Proof-of-Coverage and
Proof-of-Serialization we can obtain cryptographic proof of

the approximate location and time of events occurring within
the Helium network.

In this section we outline the motivation and implementation
for Proof-of-Coverage and Proof-of-Serialization.

3.1 Motivation

Most existing blockchain networks such as Bitcoin [9] and
Ethereum [5] use a Proof-of-Work system that relies on an
algorithmic puzzle that is asymmetric in nature. These proofs
are extremely difficult to generate, but simple for a third
party to verify. Security on these networks is achieved by the
network-wide consensus that the amount of computing power
required to generate a valid proof is difficult to forge, and as
subsequent blocks are added, the cumulative difficulty of the
chain becoming prohibitively difficult to fabricate.

These computation-heavy proofs are, however, not otherwise
useful to the network. We define useful as work that is
valuable to the network beyond securing the blockchain.
While there have been attempts in other networks to turn
mining power into something useful, such as Ethereum
executing small programs called smart contracts, the majority
of the work is not useful or reusable. The mining process is
also extremely wasteful, as the determining factor in the work
is typically computational power which consumes massive
amounts of electricity and requires significant hardware to
execute.

The proofs used in Helium must be resistant to Sybil Attacks
in which dishonest miners create pseudonymous identities
and use them to subvert the network and gain access to block
rewards to which they should not be entitled. This is a partic-
ularly difficult attack vector to manage in a physical network
like Helium. We must also be resistant to a new attack vector:
Alternate Reality Attacks exist where a dishonest group of
miners are able to simulate that wireless network coverage
exists in the physical world when it in fact does not. An
example of this would be running the mining software on
a single computer and simulating GPS coordinates and RF
networking.

We later propose a consensus protocol [Section 6] that uses
Proof-of-Coverage to both secure the blockchain and provide
an extremely useful service to the network; providing wireless
network coverage that machines can use to send data to and
from the Internet.

3.2 Inspiration

Proof-of-Coverage (PoC) is an innovative proof which allows
miners to prove that they are providing wireless network
coverage W in a specific region to a challenger, C. PoC is an
interactive protocol where a set of targets Tn assert that W
exists in a specific GPS location L and then convinces C that
Tn are in fact creating W and that said coverage must have
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been created using the wireless RF network. PoC is the first
such protocol that attempts to prove the veracity of miners in
a physical space, and then use it to achieve consensus on a
blockchain network.

With PoC we aim to solve for the following:

• Our goal is to prove that miners are operating radio
frequency (RF) hardware and firmware compatible with
the wireless protocol

• Our goal is to prove that miners are located in the geogra-
phy they claim by having them communicate via RF

• Our goal is to correctly identify which version of reality
is correct when there is a conflict

Proof-of-Coverage is inspired by the Guided Tour Protocol
(GTP) [13] which devises a system for denial of service
prevention by requiring a client c to make a request to a
variety of “tour guide” computers Gn in order to gain access
to a server s. The tour guides must be visited in a specific
order and a hash of data exchanged which reveals the location
of the next Gn in order. Only after every Gn has been visited
can c gain access to s.

Once c gets to the last stop of the tour, it submits evidence
of the first and last stop to s who is able to verify that the
first and last stops of the tour are correct without needing to
contact Gn, and that c could only know the first and last stops
if it had completed the tour correctly.

While an extremely clever and innovative system, GTP is not
directly suitable as a proof in our wireless network as radio
frequency (RF) networking has limited range and therefore
cannot communicate with peers anywhere on the network. We
aim to construct a proof loosely based on the ideas presented
in GTP, but applicable to our protocol.

We combine Proof-of-Coverage with Proof-of-Serialization—
a proof that allows miners on the network to achieve crypto-
graphic time consensus among decentralized clients. We aim
to achieve rough time synchronization in a secure way that
does not depend on any particular time server, and in such a
way that, if a time server does misbehave, clients end up with
cryptographic proof of that behavior.

3.3 Constructing Proof-of-Coverage

This section describes the construction of the Proof-of-
Coverage protocol.

We aim to construct a proof that takes advantage of the follow-
ing characteristics of radio frequency (RF) communication
that are unique and different to Internet communication:

1. RF has limited physical propagation and therefore dis-
tance

2. The strength of a received RF signal is inversely propor-
tional to the square of the distance from the transmitter

3. RF travels at the speed of light with (effectively) no
latency

Our goal is to verify whether miners in a physical region
are acting honestly and creating wireless network coverage
compatible with the Helium wireless protocol (WHIP). To do
this, a challenger C deterministically constructs a multi-layer
data packet O which begins at an initial target, T1, and is
broadcast wirelessly to a set of sequential targets, Tn, each
of which are only able to decrypt the outer-most layer of O if
they were the intended recipient. Each target signs a receipt,
Ks, delivers it to C, removes their layer of O, and broadcasts
it for the next target. Essentially an “envelope of envelopes”
only decipherable by the intended recipient.

Target 1
(T1)

Target L
(T
L
)

Target
(T )

Challenger
(C )

K
T 1

O O1 O
T

O
L

K
T 

K
T L

Figure 2. Multi-Layer Data Packet Deconstruction

3.3.1 Selecting the Initial Target

We aim to deterministically locate a geographic reference
target, T , for the challenger, C. Both C and T are miners in
the network. T does not need to be geographically proximate
to C. To do so, C initially seeds verifiable entropy, η, into the
selection process by signing the current block hash with their
private key. Since the probabilities associated to each miner
form a discrete probability distribution [Equation 1], C uses
the probability associated to each eligible miner to locate T
and applies the inverse cumulative distribution function using
a uniform random number generated via η. This allows us to
ensure that we always target potentially dishonest miners as
they have a lower score, thus increasing their probability of
being targeted by C. Given that a miners score is diminishing
linearly over time [Section 3.3.4], it is necessary to create this
inverse relationship to give low-scoring miners an opportunity
to participate in the process and increase their score. This
diminishing score also incentivizes all the participants to send
receipts to the challenger and broadcast the remainder of O.

3.3.2 Constructing the multi-layer challenge

Once T has been selected, C must construct a multi-layer
challenge, O. O is a data packet broadcast over the wireless
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network and received by geographically proximate targets Tn.
Geographically proximate is defined as within a radius of T , a
network value T radius. Each layer ofO,Ol, consists of a three-
tuple of E (S, ψ,R), where E is a secure encryption function
using the ECDH derived symmetric key, S is a nonce, ψ is
the time to broadcast the next layer of the challenge and R
is the remainder of O consisting of recursive three-tuples.
The maximum number of Ol is bounded by a network value,
Omax.

The construction logic of O by C is as follows:

1. A set of candidate nodes, Tn, are selected such that all
members of Tn are within a contiguous radio network that
also contains T

2. Two targets, T1 and TL, are selected by finding the highest
scoring targets in Tn furthest from T

3. A weighted graph, Tg, is constructed from Tn such
that members of Tg in radio range of each other are
connected by an edge weighted by the value of 1 −(
score(Ta)− score(Tb)

)
4. The shortest path between T1 to T to TL is computed

using Dijkstra’s algorithm [10] using the edge weights
from the previous step

5. An ephemeral public/private keypair Ek and Ek-1 are
generated

6. A layer Ol is created and added to O, and S is encrypted
with the combination of the public key of TL, retrieved
from the blockchain as TLk and Ek-1 as an Elliptic-Curve
Diffie-Hellman (ECDH) exchange to compute a shared
secret, known only to both parties C and TL

7. The previous step repeats with additional layers added to
O until all TL→ T1 have a layer Ol included in O

The resulting O can be visually represented as depicted in
[Figure 3].

3.3.3 Creating the Proof

Once O has been constructed, it is delivered to T1 via the
Internet peer-to-peer network and immediately broadcast by
T1 via the wireless network. The Helium wireless protocol
is not a point-to-point system, so several miners within
proximity of T1 will hear O. As described prior, each layer
Ol of O contains the three-tuple E (S, ψ,R) where E is a
secure encryption function using the ECDH-derived key, S is
a nonce, ψ is a time at which to transmit the next layer of the
packet and R is the remainder of O consisting of recursive
three-tuples. In this example, only the specific target T will
be able to decrypt E and send a valid receipt back to the
challenger, C.

O

O
1
=E(S

1
,ψ,R)

T

T
1

T
2

T
3

TL

Figure 3. Construction of O

We describe the approximate flow of Proof-of-Coverage
creation as follows:

1. T1 receives O from C via the peer-to-peer Internet net-
work, decrypts the outermost layer and immediately broad-
casts it R via the wireless network

2. T hearsO and attempts to decrypt the value of E by using
its private key pk : Epk (S, ψ,R)

3. T records both the time of arrival β and the signal strength
υ of O

4. If successful, T then creates signed receipt Ks,
Ks = (S||β||υ) signed by the private key of T

5. T submits Ks to C via the peer-to-peer Internet network,
removes the outer most layer, and wirelessly broadcasts
the remainder O

6. These steps repeat for T1..T ..TL, with TL being the last
target in the graph
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C expects to hear responses from Tg within a time threshold
λ, otherwise it considers the Proof-of-Coverage to have con-
cluded. BecauseC is the only party with complete knowledge
of O, upper bounds of the values for β and υ are assigned by
C which are used to verify that each layer of O was trans-
mitted approximately where and when it was expected. The
upper bound for β ls limited by the speed of light τ between
Tn and Tn − 1. Thus we know that, subject to some slight
delays from reflection or multipath, the packet should not
arrive at Tg later than τ multiplied by the geographical dis-
tance D plus some small episilon value, υ = τ ×

(
D + ε

)
.

For υ, because of the inverse-square law, we can calculate
the maximum RSSI (Received Signal Strength Indication)
possible for a packet transmitted, µ, from Tg − 1 to Tg as
µ = 1

D2 . Gateways that are closer than expected, or which
are transmitting at a higher power to mask their location dis-
parity, are unlikely to get µ correct, given that they do not
know who the next layer of O is addressed to.

Once TL has delivered receipt to C, or λ has elapsed, the
Proof-of-Coverage is completed. The collection of signed
receipts, Ks, constitute the Proof-of-Coverage that C will
submit to the network.

K1 = (S1  ||  β  ||  υ)

KT = (ST  ||  β  ||  υ)

KL = (SL  ||  β  ||  υ)

Challenger 
(C )

Target 1 
(T1)

Target 
(T )

Target L 
(TL)

Figure 4. Proof-of-Coverage flow

3.3.4 Scoring

The score allocated to a miner, and therefore the resulting
score of the Proof-of-Coverage, is an integral part of the
consensus protocol, further outlined in [Section 6]. When
miners join the Helium network, they are assigned a score,
φm. We consider any miner with a score greater than φm to
be an honest miner. This score depreciates according to the
number of verifications the miner has as well as the height
since their last successful verfication. As φm decreases the
probability of the miner M being the target for C increases
such that the network continually attempts to prove that the
lowest scoring miners are acting honestly, and giving miners
a reasonable chance to improve their score.

In order to achieve this behavior we define the following
invariants:

M , miner
v, number of successful verfications for M -

number of failed verifications for M
h, height since the last successful verification for M

If we assume that the ideal verification interval for any miner
is close to 240 blocks (4 hours if we assume a 60 second block
time), we scale these invariants to fit the scoring functions:

v′, v/10.0
h′, h/480

Using the above we can now construct a staleness-factor, δ,
which would be used in determining the score of the miner
M .

δm =


−(8.h′)2 v′ = 0
v′.(1− h′2

min(0.25,v′) ) v′ > 0

v′.(1− 10.v′.h′2) v′ < 0

The above conditions strictly adhere to the following princi-
ples:

1. A negative v indicates that the miner is consistently failing
verification.

2. If v = 0, we don’t have any trust information, therefore,
we use a steep parabolic curve for the decay dependent on
h′.

3. If v > 0, it implies that the miner has been successfully
verified consistently, hence, we use an inverse parabolic
curve that crosses the Y axis at 1, where the width of the
parabola increases as a factor of v up to 0.25. This implies
that the more positive verifications [Section 3] the miner
has accrued, the slower its score decays as a factor of h′.

4. Finally, if v < 0, this is the inverse of the above case,
wherein, a miner has consistently been failing verification.
Therefore, we use a similar parabola as above, however,
the width of the parabola decreases as a factor of v, leading
to a higher score decay for the miner as a factor of h′.

[Figure 5] shows the trends for each of the above functions.

Adhering to the above set of rules, we define the following
scoring function, which is essentially a variation of a sigmoid
curve fluctuating between values (0, 1):

φm =
arctan(2.δm) + 1.58

3.16

This scoring function yields [Figure 6], which shows the
variation of the score with the staleness-factor:

[Figure 7] shows a snapshot of a random subset of the
network at any blockchain height h. The miners represent
random locations with an illustrated score, while the edges
are calculated using Dijkstra’s algorithm [10].
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Figure 6. Scoring algorithm and the resulting staleness
factor

After 10,000 iterations the network appears as represented in
[Figure 8].

The goal of this system is to ensure that the scoring algorithm
considers that some miners may attempt to act dishonestly.
However, because the calculated edge-weights (via Dijkstra’s
algorithm) and the target selection mechanism ensure that we
only boost the score of a miner when it is being verified by
other high scoring miners, we believe that the system will
favor legitimate miners and deter dishonest ones.

3.3.5 Target Selection

Due to the way scoring decays, there is a possibility that a
given miners’ score may become stale as that miner may not

Figure 7. Snapshot of a random subset of the initial network

Figure 8. Snapshot of a random subset of the network after
10000 iterations

be verified within a reasonable interval. We therefore struc-
ture the target selection mechanism to give miners a statisti-
cally greater chance to increase their score by being selected
as a target as their score decays. This is accomplished by
biasing the probability of miners being selected as potential
targets based on their individual scores.

Let the set of miners be defined as:

N = {m1,m2,m3 . . . mn | n > 1}

Let the set of miner scores be defined as:

S = {φm,m ∈ N}

We assign the target selection probability to each miner in the
following way:

P (m) =
1− φm

n−
n∑

i=1

φmi

(1)

The above equation ensures that the miner with the lowest
score is assigned the highest probability of being selected as
a potential target while the opposite holds for the miner with
the highest score.
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Furthermore, it also asserts that the probabilities are inversely
proportional to the score of an individual miner. This allows
us to successfully target potentially low scoring miners and
improve the overall balance of the scoring system.

Another valuable aspect of assigning the probability as shown
above is that all the probabilities together form a discrete
probability distribution. A discrete probability distribution
satisfies the following equation:

∑
i

P (M = i) = 1

3.3.6 Verifying the Proof

Once TL has delivered Ks, or λ has elapsed, the Proof-
of-Coverage is considered complete. When C submits this
proof, via a special type of transaction, all receipts Ks

from T1...TL are included in the transaction published to the
blockchain network. As all the steps originally completed by
C are deterministic in nature with verifiable and recreatable
randomness, it is simple for a verifying miner, V , to recreate
the original steps and verify that the proof is legitimate.

Verifying miners in the consensus group [Section 6] who see
the proof transaction are able to verify the Proof-of-Coverage
by recreating the following steps:

1. The verifying miner, V , reconstructs the set of miners N

2. The random seed η can be verified by V to have been
created at approximately the correct time by the private
key of C

3. V then selects T from N , as seeding with η will result in
the same target selection

4. The set of candidate Tn are reconstructed from which T1
and TL are determined

5. Dijkstra’s algorithm is used to reconstruct the graph Tg

6. The Ks receipts contained in BC are verified to have been
signed by the private keys of T1..T ..TL

Assuming these steps are completed successfully, the Proof-
of-Coverage is verified the score of C is adjusted appropri-
ately.

3.4 Constructing Proof-of-Serialization

To achieve cryptographic time consensus among decentral-
ized clients, we implement a simplified form of Google’s
Roughtime [12]. Roughtime is a protocol that aims to achieve
rough time synchronization in a secure way that does not
depend on any particular time server, and in such a way that,
if a time server does misbehave, clients end up with crypto-
graphic proof of that behavior.

This section describes the construction of the Proof-of-
Serialization protocol.

3.4.1 Creating the Proof

We outline the approximate process to achieve cryptographi-
cally secure time as follows:

1. To begin, a miner M pseudo-randomly picks two miners
M1 and M2, to prove contact serialization with

2. It is assumed M has a public key for M1 and M2,
otherwise M should obtain it from the blockchain

3. M generates a nonce, R, which is a SHA512 hash of the
Proof-of-Coverage which M has partially constructed

4. M then generates a salted hash commitment K called the
proof-kernel K = H (R||M1||M2)

5. M sends K to M1. M1 replies with T , a signed message
including the current time T1 and K

6. M knows that the reply from M1 was not pre-generated
because it includes the nonce R that M generated

Because M can not trust M1 it will ask for another time from
M2:

1. For the second request, a new nonce R is generated using
T truncated to 512-bits, blinded by XOR’ing a randomly
generated 512-bit number

2. M then generates a sub-proof-kernel, L = H (R||T ||K),
and sends it to M2

3. M2 replies with U , a signed message including the current
time T2 and L

4. U is now a proof artifact that shows that M desired and
then proved a serialization between M1 and M2

With only two servers, M can end up with proof that some-
thing is wrong, but no idea what the correct time is. But with
half a dozen or more independent servers, M will end up
with chain of proof of any server’s misbehaviour, signed by
several others, and enough accurate replies to establish what
the correct time is, Tt.

M

M1 M2

K=H(R||M1||M2)

T=(T1||K) U=(T1||L)

L=H(R||T||K)

K L

UT

Figure 9. Creating Proof-of-Serialization
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3.4.2 Verifying the Proof

If we assume that the times fromM1 andM2 are significantly
different, and the time from M2 is before M1, then M has
proof of misbehaviour. The reply from M2 implicitly shows
that it was created later because of the way thatM constructed
the nonce. If the time from M2 is after, then M can reverse
the roles of M1 and M2 and repeat the process to obtain,
assuming steady clocks, a misordered proof as in the other
case.

To verify the correct time, it is necessary for M to repeat
the time synchronization process with enough miners to gain
consensus on the correct time:

1. A miner M again pseudo-randomly selects n miners
M1...Mn

2. M generates a salted hash commitment K and delivers it
to M1, where K = H (R||M1||M2)

3. M1 again responds with T , a signed message containing
the current time T1 and K

4. M generates a sub-proof-kernel, L = H (R||T ||K), and
sends it to the next miner Mn

5. The next miner replies withU , a signed message including
the current time and L

6. These steps repeat through Mn until at least three time
responses, Tn, are monotonic

7. Tn can then be confirmed to be Tt, the correct time

M

M
1

M
2

M
n

K

L

U

T

Figure 10. Verifying Proof-of-Serialization

3.4.3 Utilizing the Proven Time

Once the correct time Tt has been determined via Proof-
of-Serialization, it is used by M and included during proof
construction as described in [Section 2.2]. The randomness
η used to compute O and thus obtain the Proof-of-Coverage
is tied to the previous block, which contains Tt. This allows
us to prove, with relative certainty, that some piece of data
D was created between the time of the previous block bt and
Tt. D in this case is the Proof-of-Coverage. Thus we know
that D must have been constructed between bt and Tt. This
ensures that the Proof-of-Coverage cannot be pre-computed.

4. Proof-of-Location

Using Proof-of-Coverage and Proof-of-Serialization we
achieve cryptographic proof of a miners location and cryp-
tographic time consensus among those miners; we can take
advantage of these proofs to determine the physical geolo-
cation of WHIP-compatible machines and generate a new
type of proof based on the machines geolocation. We call this
Proof-of-Location.

4.1 Motivation

Location tracking is one of the most valuable use cases for
low power machines. It is expected that there will be at least
70 million asset tracking devices shipping by 2022 [14].

Today, Global Navigation Satellite Systems (GNSS) are
used by the majority of machines which require geolocation
services, with GPS being the most popular implementation.
GPS systems use a technique called Time of Arrival (TOA)
to determine the location of a receiver in relation to 20 or
so satellites orbiting the earth. GPS satellites synchronize
their time using a high precision on-board clock and regular
synchronization with control servers on the ground. GPS
receivers receive precisely timestamped data from a number
of satellites overhead and use a technique called trilateration
to provide a precise location on earth.

GPS has matured into an extrordinarily reliable service used
in a wide range of applications for providing both location
and time services. However, there are significant drawbacks
to GPS particularly in the realm of low power machines that
Helium is designed to facilitate. It can take around 2 minutes
for a GPS receiver to achiehve lock with sufficient satellites,
which translates to drastically reduced battery life. As an
example, a machine transmitting its location around 25 times
a day may only last a month on a AA battery compared with
several years of life on the same battery without GPS. Using
GPS indoors is generally impossible, as the GPS receiver
typically needs line of sight with the sky in order to see the
3-4 satellites required to calculate an accurate location. GPS
data is also delivered unencrypted, which leaves the system
extremely vulnerable to spoofing, jamming, and other attack
vectors.

We are interested in low power implementations of location
services that, in conjunction with an immutable distributed
ledger, can be used to verify location and time. Given the
above factors, we conclude that GPS is an unacceptable
mechanism for these requirements.

This section outlines a new geolocation implementation that
we describe as Proof-of-Location: a low power, cryptographi-
cally provable immutable record of a machines location and
time.
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4.2 Constructing Proof-of-Location

Our goal is to verify the physical geolocation of a given
machine, D, without using GNSS hardware. To do this, we
rely on the fact that we have already determined and proven
the physical geolocation and cryptographic time consensus
of a given miner, M , using the Proof-of-Coverage and Proof-
of-Serialization protocols described in [Section 3].

4.2.1 Precise timestamping of RF data

There are a handful of techniques used by positioning systems
without the use of GNSS, which include Received Signal
Strength Indication (RSSI), Time of Arrival (ToA), and
Time Differential of Arrival (TDoA). These techniques use
radio frequency transmissions, usually recieved by one or
more receivers, combined with various algorithms based on
characterstics of those transmissions.

Our conclusion is that TDoA is the most accurate but chal-
lenging technique to implement [15], [16], [17], [18]. TDoA,
in simple terms, relies on the variance between precisely
synchronized and recorded timing information between a
transmitter and several receivers. As such it is critical to accu-
rately timestamp RF packets machines emit, and synchronize
the clocks of miners on the network.

An example timestamping flow is as follows:

1. A machine, D, broadcasts a packet P containing arbitrary
data via the wireless network

2. Several miners, Mn, hear P , and record a timestamp Tn
of their reception time of P

3. Tn is created based on the nanosecond time received via
GNSS and stamped using raw radio sample data received
by the gateway radio frontend

4. A signed transaction including P and Tn are delivered to
the router R belonging to D by Mn

5. R has now received several copies of P , each of which
has a slightly varying value of Tn

Gateway 1

GPS/GNSS

Gateway 2

Device

Gateway 3

t

t

t

2

3

1

Figure 11. Geolocation via TDoA

Typically it is challenging to accurately record these times-
tamps as any nanosecond-level variance in the timestamp can
lead to significant variance in the resulting location solution.
To achieve this level of precision it is necessary to use ex-
tremely high-bandwidth raw in-phase and quadrature (I/Q)
data from the miners radio hardware and a fast enough pro-
cessor to sample this data, identify an appropriate packet, and
record the timestamp. Typically a Field Programmable Gate
Arrays (FPGA) is used as the processor for this data as these
types of processors are able to process data in a deterministic
way. However FPGAs are fairly expensive, power hungry, and
emit significant heat. Instead, the reference Helium Gateway
mining hardware uses a novel technique using commodity
low-cost components to process I/Q data and achieve times-
tamping at this level of precision. As a comparative example,
an existing low-cost LoRaWAN [23] access point is only
capable of providing timestamp data accurate within several
milliseconds of precision - as radio waves travel at the speed
of light, each millisecond equates to approximately 300,000
meters of physical distance which we deem practically use-
less for any accurate geolocation. Further information on the
techniques, components and schematics used in the reference
Helium Gateway will be released as open source software at
network launch.

4.2.2 Using timestamps to derive location

Now that the machines router, R, is in posession of a variety
of signed messages which include the precise timestamps
Tn it is possible to solve for the location of the machine D.
A variety of TDoA algorithms exist such as [20], [21], [19]
and [22]. If a sufficient density of Mn and therefore Tn are
recorded for a given packet, the location of D can be derived
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down to a few meters depending on a variety of factors. We
encourage the interested reader to read the cited papers for
further details on TDoA algorithms, as they are beyond the
scope of this document.

4.2.3 Verifying Proof-of-Location

Once R has computed a location of D, it may become neces-
sary to verify that the reported location of D was at accurate
at that given moment in time. As the Proof-of-Location is
deterministic and derived from information publicly avail-
able in the blockchain it is possible to reconstruct every step
involved:

• From the signatures contained within the timestamped
packets, Tn, every miner involved in providing timestamps
can be verified

• By inspecting the assert_location [Section 5.3.3]
transaction, the claimed GPS location of those miners
can be determined

• The Proofs-of-Coverage and scores [Section 3] for each
miner can be retrieved from the blockchain and inspected

By auditing the above steps the router operator can crypto-
graphically prove (or disprove) the location of each of the
miners involved in providing the components for Proof-of-
Location for a given machine D.

The accuracy of the proof will depend heavily on the number
of Mn involved and therefore Tn received. Additional RF
factors such as reflections and multipath can significantly
affect the accuracy of the location calculation.

5. Transactions

Transactions in the Helium blockchain provide functionality
that enables address-to-address transfers of Helium tokens,
similar to many existing blockchain networks, but also pro-
vide a set of primitives that enable core functionality that is
critical to the operation of a DMN. In this section we address
the philosophy behind our transaction system, the primitives,
and the way fees on the network work. We will first address
Helium’s need for microtransactions and propose a new solu-
tion.

5.1 Helium’s Need for Microtransactions

Machines Pay Per Packet The goal of Helium is to provide
Internet data transport fees (the fees paid by machines to
miners) that are an order of magnitude less than anything
currently available for this type of service. This transport
fee would need to be metered per-packet in order to allow
for maximum flexibility — this way, a machine could
transact with any miner, even just to send or receive a

single packet without having previously established a
relationship with that miner.

All Transactions Occur On-Chain Helium is built on the
philosophy that all transactions should occur on-chain;
that is, blocks should be sized and mined with a frequency
such that every transaction which occurs on the network
should be stored in the blockchain. To accomplish this
goal the cost of mining must be low, blocks must be large
enough to encapsulate a large number of transactions, and
frequent enough that transactions are processed quickly.

Allow Machines to Persist Data to the Blockchain Because
the Helium blockchain services a specific use, the DMN,
blocks must additionally be able store fingerprints of data
sent from machines along with the transaction which pays
a miner for their transport service. We believe that this
holistic tamper-proof data trail will enable entirely new
use cases where the authenticity and veracity of sensor
data is critical.

5.2 Limitations of Existing Solutions

Now that we have discussed the requirements of transactions
within Helium, we outline the existing solutions for micro-
payments on a blockchain and address their shortcomings as
they apply to our network.

Heavyweight Transactions This first option is suitable only
for larger transactions as the service fee is smaller than the
payment. This method does not work well for very small
transactions as whoever pays the transaction fee ends up
potentially paying more for the transaction fees than the
value being exchanged. This is a similar problem to buying
small-value items using credit cards today. The vendor
pays a minimum fee on each credit card transaction, and
under a certain charge they lose money on the transaction.
These heavyweight transactions are clearly not suitable
for use as a micro transaction system within Helium.

Zero-fee Transactions While highly desirable from a ma-
chine perspective, a true zero-fee blockchain would be
fraught with spam transactions. It would be trivial to write
a script to pollute the blockchain with transactions meant
only to waste space on the blockchain and increase conges-
tion on the network. Some ostensibly zero-fee blockchain
implementations solve this issue in clever ways, such as of-
floading the work of processing and verifying transactions
to the transactors themselves. However, these implementa-
tions have their own issues, for example IOTA [24] has not
yet proved it is capable of operating this type of system
without the need for a centralized coordinator.

State Channels State channels [31] allow two parties to
exchange value, usually in small increments at a time, with
very limited risk. If one party thinks the other is acting
dishonestly, they can publish the final transaction in the
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state channel to the blockchain and close the channel. At
most one payment is usually at risk. However, there are
several downsides: the payer has to lock up significant
funds for the lifetime of the state channel, meaning they
may be unable to open state channels with other parties
or pay other dues; transactions in the state channel do not
appear on the main chain at all; and these implementations
are relatively complex to execute well (note that neither
Lightning [29] nor Raiden [30] have become widely used
yet).

Payment in Arrear Payment in arrear, after the services
have been rendered, is an extremely risky method in
a decentralized pseudo-anonymous system. There is no
mechanism to gain certainty around the intent or honesty
of the entities transacting, nor do you know if the entities
control the requisite funds when the debt comes due. This
model only works when the parties involved trust each
other, or have some other recourse to recover funds.

5.3 Types of Fees in Helium

In this section we outline the types of fees needed on the He-
lium network, and propose solutions which take advantage of
the unique characteristics of the Helium Consensus Protocol
[Section 6].

5.3.1 Transport Fees

Machines using the Helium network to send and receive data
to and from the Internet must pay miners what is known as a
transport fee. This fee compensates the miner for delivering
data packets between the machine and the intended router
on the Internet, and is unrelated to the transaction fee that
miners earn for mining transactions as part of blocks that are
recorded to the blockchain. The fee is negotiated between
the router to which the machine belongs, and the miner, as
machines are not directly connected to the blockchain.

Miners set the price they are willing to accept to transport
data to and from the Internet on a per-byte basis.

A machines router pays miners the transport fee on trans-
mission or reception of the data. This means that the miner
will receive the transport fee prior to the transaction being
mined in a block and recorded into the blockchain. This en-
tails some risk for the miner, as they must believe that the
transport payment is not malicious or fraudulent prior to it
being confirmed in the blockchain. However, given how low
the per-byte transport amount is likely to be, this risk seems
tolerable. A miner can blacklist a machine or organization
address if they continually abuse the system.

An example transport fee process is as follows:

1. A miner M hears a packet P broadcast by machine D

2. M uses the address of D, attached to P , to identify a
router R as the owner of D

3. M sends the signatureK(P ) of P and an offer of n tokens
for transport to R

4. R receives K(P ) and the payment offer and determines
if it accepts the packet for the offered price

5. Assuming R accepts the packet at the offered price, it
constructs a transaction T of value n payable to M and
sends it to the miner

6. Once M sees the transaction in the reply it delivers P to
R and submits T to the consensus group for inclusion in
the blockchain

5.3.2 Transaction Fees

Transaction fees are an essential part of most blockchain
implementations. They incentivize miners to include a trans-
action in their draft block and ensure that spam transactions
do not pollute the blockchain and network.

To determine the appropriate fee for a new transaction, the
transactor will take the median of the past δ packet transport
fees, within some margin of error. Until δ packet transports
have occured on the network, the fee will be fixed at a
constant value α. By anchoring the transaction fee to the
current fees being charged for transport on the network, we
root them in reality. Helium’s primary purpose is to facilitate a
network of wireless Internet coverage. In order to accomplish
this in the long term, all of the economics of the system must
align to make it practical for the primary users to transact
on the network. If one set of fees were to outstrip the other,
the network would quickly lose its utility for the key user
segment.

To enable miners and other light clients to determine an
appropriate fee, full nodes [Section 5.5] will expose a fee
suggestion API. This way resource constrained entities that
do not maintain a complete copy of the blockchain will not
need to compute the fee from the most recent transactions.
During the block submission process, miners in the consensus
group [Section 6] will verify the correctness of the block
and ensure that no fee has deviated beyond the acceptable
threshold of δ.

Due to the censorship-resilience built into the Helium Consen-
sus Protocol [Section 6], there is no incentive to include larger
transaction fees. Unlike Bitcoin, where miners cherry-pick
the transactions with the largest fees from their mempool to
include in their blocks, Helium miners cannot see the contents
of the transactions without collaborating with other members
of the consensus group to decrypt them. Transactions with
incorrect fees (either too high or low) will be rejected prior
to the block being appended to the blockchain.
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5.3.3 Staking Fees

The assert location transaction, mentioned below [Sec-
tion 5.4], has a special type of fee calculation; a dynamic fee.
Because the Helium network reaches maximum usefulness at
a specific density of gateways, we want the fees to incentivize
the network density to be as close to that ideal as possible. To
that end, the transaction fee for asserting a location can be
thought of as the y coordinate on a curve with the formula:

y = (x −D)
4

+ F

where D is the ideal gateway density and F is the unit fee for
a location transaction. A sample graph of this function where
D = 3 and F = 1 follows:
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Figure 12. Staking fee vs Miner density

As can be seen, gateways near the ideal network density are
cheap to add, but establishing a new network or overpopu-
lating a network gets expensive very quickly. This serves to
dis-incentivize gateway deployments that are not beneficial
to the network. In particular, Alternate Reality Attacks and
warehouses full of miners become prohibitively expensive.

Miners who have not asserted their location, and therefore
not paid the staking fee, will not be considered for inclusion
in the consensus group [Section 6].

Miners who move physical location will need to assert a new
location, and pay the new staking fee.

5.4 Primitives in Helium

Having discussed the philosophy of our transaction system
and presented our approach to facilitating zero-fee micro-
transactions on the Helium network, we now delineate the
transaction primitives and their properties.

add gateway Registers a new gateway on the network,
adding it to an existing account which will be respon-
sible for supplying its stake (required for mining) and will

receive mining rewards [Section 6] and fees earned by the
gateway

Property Description

gateway address the public key address of the gateway
being added to the network

owner address the address of the owner account
signatures mutual signatures of the owner and

gateway

assert location Asserts a gateway’s location in the form of
geographic coordinates, requiring a dynamic stake

Property Description

gateway address the address asserting its location
nonce a monotonically increasing integer
latitude the latitude of the gateway
longitude the longitude of the gateway
altitude the altitude of the gateway
signature the signature of the gateway

payment Moves tokens from one account, the payer, to
another account, the payee including the requisite fee.

Property Description

payer address the address of the sender
payee address the address of the recipient
nonce a monotoically increasing integer
value an integer-based representation of the

tokens to send
signature the signature of the sender

5.5 Light Clients & Full Nodes

Until now, we have discussed how to deal with microtrans-
actions in a cost-effective way, however we have not yet
addressed how to deal with the inevitable continuously in-
creasing size of the blockchain. One requirement for Helium
is that all transactions occur on-chain. This means that the
size of the full blockchain will eventually grow quite large.
This is compounded by the fact that all miners on the network
are gateway devices, relatively limited in computation power
and storage space.

We solve this constraint by allowing mining nodes to operate
as light clients on the blockchain, pruning old blocks and
transactions as needed and keeping only the latest ledger
values. They will communicate over the peer-to-peer network
with full nodes which maintain a complete history of the
blockchain to verify transactions.

This raises a question: who is responsible for operating full
nodes, and what is their incentive to do so? Routers are
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software-only applications with access to scalable, cloud-
based storage and will be required to operate full nodes in
order to fulfill their purpose. Helium Systems Inc will operate
a set of hosted routers that will make it easy for developers to
launch products without needing to deploy their own router.
However, many enterprise developers, who are required to
maintain a higher standard of privacy, will want to host their
own router. Together, these routers will form a network of full
nodes capable of supporting resource constrained gateways
and wallets operating light clients.

6. Helium Consensus Protocol

Instead of an extremely computationally expensive and power
hungry Proof-of-Work, Helium miners generate Proofs-of-
Coverage [Section 3]. In this section we present how these
useful proofs can be used to create permissionless network
consensus.

6.1 Motivation

Many current generation blockchains rely on a computation-
ally difficult Proof-of-Work to protect the network against
sybil attacks, also known as Nakamoto Consensus. The fact
that the Proof-of-Work is computationally expensive to cre-
ate, but cheap to verify means that in order to propose a
new valid block to the network there is evidence that a sig-
nificant amount of computation has been expended. Due to
the fact that computation is limited by hardware cost, power
cost, physical space and computational efficiency of modern
technology, sybil attacks become impossible. However, this
approach, while fundamental to the mainstream adoption of
blockchain technology, has several downsides. Chief among
the downsides is the power consumption; it is estimated that
the Bitcoin network is consuming more power than many
small countries. Bitcoin’s PoW is so wasteful it is now on the
list of the top uses of electricity in the world and whenever
the value of Bitcoin goes up, so do the resources devoted to
mining it.

Related to the power problem is the mining pool problem.
Many blockchains have mining pools where users band
together to, in parallel, mine a single block and listing the
pool’s address as the party to get paid. The pool then shares
the block reward with the members of the pool. This ends
up defeating many of the advantages of decentralization as
both Bitcoin and Ethereum have come to be dominated by
less than 10 mining pools each. These large pools effectively
prevent independent parties from mining blocks on their own.
This means that the consensus protocol for these blockchains
is effectively controlled by a very small number of mining
pools and risks becoming further centralized.

More recently there has been increased momentum around
making blockchain consensus protocols less wasteful and

more useful to the network. Filecoin [25] has a Proof-of-
Spacetime and Ethereum [5] is moving towards a Proof-of-
Stake [26] approach.

For Helium, we desire a consensus protocol with the follow-
ing attributes:

Permissionless Nodes should be able to freely participate
in the network without permission or approval from any
other entity, as long as those nodes operate in accordance
with the consensus rules.

Extremely decentralized in nature Network consensus should
be designed such that there is no incentive available for
taking advantage of macro-economic factors, such as
cheaper access to electricity in certain geographies, and
that simply buying more hardware in the same location
is either ineffective or cost prohibitive. Additionally, it
should be impossible for mining pools to form and for
groups to collaborate in mining blocks.

Byzantine Fault Tolerant The protocol should be tolerant
of Byzantine failures [27] such that consensus can still
be reached as long as a threshold of actors are acting
honestly.

Based on useful work Achieving network consensus should
be useful and reusable to the network. Work performed in
Nakamoto Consensus-based systems is only useful for the
particular block being mined and is not otherwise useful
or resuable on the network. An ideal consensus system
would contain work which is both useful and reusable to
the network beyond simply securing the blockchain.

High confirmed transaction rate Our ideal consensus pro-
tocol would be able to process a very high number of
transactions per second, and once a transaction is seen in
a block it would be considered confirmed. Many existing
blockchains require a lengthy settlement time while the
network achieves consensus which is not ideal in a system
like Helium, which may experience a very high number of
transactions and where waiting for a transaction to settle
is not tenable.

Transactions are censor-resistant Ideally miners would
not be able to censor or otherwise pick and choose trans-
actions prior to mining them. This would not only nullify
any attempts to nefariously censor transactions, but would
allow for otherwise unattractive transactions (such as
fixed-fee transactions) to be included in the blockchain.

The remainder of this section lays out our construction of a
consensus protocol with these design goals in mind that we
refer to as the Helium Consensus Protocol (HCP).

6.2 HCP

We propose a unique consensus protocol around Proof-of-
Coverage to capture the useful work of verifying the network

17



as a replacement for Proof-of-Work, combined with a variant
of the HoneyBadgerBFT (HBFT) [4] asynchronous byzantine
fault tolerant protocol.

6.2.1 HBFT

HBFT is an asynchronous atomic broadcast protocol designed
to achieve optimal asymptotic efficiency, initially presented
by Miller et al in 2016. In HBFT, the setting assumes a
network of N designated nodes with distinct well-known
identities (P0 through PN-1). In our HCP instantiation this
network of nodes is known as the consensus group C. The
consensus group receive transactions as input, and their
goal is to reach common agreement on an ordering of these
transactions and form them into blocks to be added to the
blockchain.

The protocol proceeds in rounds, where after each round, a
new batch of transactions is appended to the blockchain. At
the beginning of each round, the group choose a subset of the
transactions in their buffer, and provide them as input to an
instance of a randomized agreement protocol. At the end of
the agreement protocol, the final set of transactions for this
round is chosen.

HBFT relies on a threshold encryption scheme [28] that
requires transactions be encrypted using a sharded public
key, such that the consensus group must work together to
decrypt it. This means that no individual node is able to
decrypt or censor a particular transaction without colluding
with the majority of the group.

6.2.2 Applying Proof-of-Coverage to HBFT

In Helium, miners are required to submit Proofs-of-Coverage
to the network at an epoch ∆p. These proofs are submitted
as a special type of transaction, and subsequently recorded
to the blockchain. As detailed in [Section 3], Helium miners
increase their score as they submit valid proofs to the network.
At an epoch ∆c the highest scoring miners, N , are elected as
the new HBFT consensus group C.

By using Proof-of-Coverage to elect the members of C we
are essentially substituting for well-known identities in the
HBFT protocol. As we desire a permissionless network, we
can use Proofs-of-Coverage to determine whether miners are
acting honestly and reward the most honest miners at a given
epoch by electing them to the HBFT consensus group.

6.2.3 The consensus group

During ∆c, the currently elected consensus group is responsi-
ble for creating blocks and appending them to the blockchain.
All new transactions on the network are submitted to the cur-
rent members of the consensus group. New blocks are created
by C at a fixed interval ∆b and recorded to the blockchain. A

token block reward is split among the members of C for ev-
ery block submitted, along with the sum of all fees contained
within valid transactions. In the unusual case that there are
no transactions during ∆b, am empty block is appended to
the blockchain.

6.2.4 The mining process

Once the consensus group C has been elected for a given ∆c

epoch, a distributed key generation phase occurs to bootstrap
a threshold encryption key TPKE. TPKE is a cryptographic
primitive that allows any party to encrypt a transaction to
a master public key PK, such that C must work together to
decrypt it. Once f + 11 correct members of C compute and
reveal decryption shares, σi, the transaction can be recovered.
Once PK is generated via the TPKE.Setup function, a block
containing PK is immediately submitted to the blockchain.
Each member Nm in C receives a secret key share, SKi, of
PK.

Miners on the network submit new transactions t to C.
Each member of C takes a random subset of the first B
transactions in its queue and applies the TPKE.Enc(PK, t)
→ e function and submits them to the other member of C.
Once the members of C receive at least N − f e they run
the TPKE.DecShare(SKi, e)→ σi function to produce their
decryption share. Members broadcast their σi to the other
members of C, and once f + 1 members have seen σi shares
they can proceed to the TPKE.Dec function using PK, e and
the σi shares and attempt to decrypt the transaction. Each
member of C appends decrypted transactions to their own
instantiation of the next block kept in a local buffer. Double-
spend and other malformed transactions are removed from
these blocks at this stage.

As members of the group cannot decrypt e on their own, it
is not possible for a transaction to be censored by a given
member prior to its inclusion in the candidate block without
f + 1 members of C colluding as transactions are received.
Any honest member of C that has t in the first B of its
transaction queue will eventually be able to include t in a
block as the other members of C can’t decrypt the transaction
until it has been agreed to, at which point it is too late to
censor it. As the members of C for a ∆c epoch are selected
based on their submitted Proofs-of-Coverage, making the
members unpredictable, this type of collusion would be
extremely challenging to execute.

Once f + 1 nodes have agreed on the transactions for the
block, a TPKE threshold signature is obtained over the block.
This certifies that enough nodes to exceed the Byzantine fault
threshold have agreed on a block. Members of C which are
censoring or disagreeing on the contents of the block will
produce an incompatible signature share that cannot be used

1 f is a protocol parameter equal to the number of tolerable byzantine faults
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to count towards the signature threshold. This block is then
gossiped out over the peer-to-peer network to all miners and
added to the blockchain.
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Figure 13. The Consensus Group & Mining

6.2.5 Conclusion

We have presented our consensus protocol which combines a
modern, asynchronous and highly efficient Byzantine Fault
Tolerant consensus protocol with a novel mechanism for sub-
stituting permissioned identity with a useful and reusable
Proof-of-Coverage. The resultant protocol satisfies the design
requirements of being permissionless, decentralized, byzan-
tine fault tolerant, based on useful work, and with a very
high-rate censor proof transaction mechanism.

We refer the interested reader to [4] for a detailed breakdown
and analysis of the HoneyBadgerBFT protocol.

7. Future Work

This paper presents a well thought-out design for building
the Helium network. However, we consider this to be just
the beginning of the engineering, research and design of
decentralized wireless networks. We believe that this tight
integration of real-world hardware with a blockchain and
a native token is a novel and valuable innovation that can
be applied to other kinds of networks and wireless physical
layers. We believe that the future of blockchains is not about
who has the most hashing power or access to the cheapest
electricity, but about blockchains where the mining proof is
tied to providing a valuable, verifiable service.

There are several initiatives that we either have or intend to
undertake, including:

• Investigate the applicability of applying these ideas to
other physical layers such as WiFi, Bluetooth and Cellular

• Explore the potential for the delivery of 5G 60GHz+
mmWave connectivity through a similar design

• Research and implement more Proofs-of-Coverage to
keep the network secure as it grows

• Game theoretical analysis of the incentive system

• Formally prove the scoring algorithm used in the Proof-
of-Coverage

• Create and release the WHIP wireless specification

• Manufacture gateways and machine modules for availabil-
ity at network launch

• Investigate the deployment of a smart contract environ-
ment beyond the basic DMN primitives

• Continued work and evolution of Forward Error Correc-
tion techniques
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