MEDICAL POLICY	Genetic Studies and Counseling
Effective Date: 4/1/2021	Medical Policy Number: 215
Kany Soo 4/1/2021	Medical Policy Committee Approved Date: 10/15; 6/16; 12/16; 11/17; 12/17; 1/18; 2/18; 4/18; 6/18; 8/18; 9/18; 12/18; 4/18; 5/19; 11/19; 07/2020; 12/2020; 03/2021
Medical Officer Date	

See Policy CPT/HCPCS CODE section below for any prior authorization requirements

SCOPE:

Providence Health Plan, Providence Health Assurance, Providence Plan Partners, and Ayin Health Solutions as applicable (referred to individually as "Company" and collectively as "Companies").

APPLIES TO:

All lines of business

BENEFIT APPLICATION

Medicaid Members

Oregon: Services requested for Oregon Health Plan (OHP) members follow the OHP Prioritized List and Oregon Administrative Rules (OARs) as the primary resource for coverage determinations. Medical policy criteria below may be applied when there are no criteria available in the OARs and the OHP Prioritized List.

DOCUMENTATION REQUIREMENTS

In order to determine the clinical utility of a genetic test, the following documentation must be provided at the time of the request:

- Name of the panel test OR the name of the gene(s) and/or components of the test
- Name of laboratory that performed or is performing the test
- Clinical notes should include the following:
 - \circ $\;$ Reason for performing test, including the suspected condition
 - \circ $\;$ Signs/symptoms/test results related to reason for genetic testing
 - Family history, if applicable
 - \circ $\;$ How test results will impact clinical decision making
- CPT codes billed

MEDICAL POLICY	Genetic Studies and Counseling
Effective Date: 4/1/2021	Medical Policy Number: 215
Kany Soo 4/1/2021	Medical Policy Committee Approved Date: 10/15; 6/16; 12/16; 11/17; 12/17; 1/18; 2/18; 4/18; 6/18; 8/18; 9/18; 12/18; 4/18; 5/19; 11/19; 07/2020; 12/2020; 03/2021
Medical Officer Date	

POLICY CRITERIA

Notes:

- This document does not address the following:
 - Pharmacogenetic tests (testing to determine the appropriate course of therapy).
 - o Genetic tests related to reproductive planning or prenatal testing.
- Other, more specific, Medical Policies may apply:
 - Please see <u>Cross References</u> section below for medical policies which may apply to specific conditions.

For example, genetic testing for hereditary colorectal cancer is addressed in the *Genetic Testing: Inherited Susceptibility to Colorectal Cancer* medical policies.

Policy Criteria Links

- <u>Genetic Counseling (For all lines of business except Medicare)</u>
- <u>General Criteria for Genetic Testing (All Lines of Business)</u>
- <u>Covered Genetic Testing (All Lines of Business)</u>
 - Hereditary Hearing Loss
 - o Li-Fraumeni Syndrome
 - Long QT Syndrome
 - Microarray Testing
- Non-Covered Genetic Testing (All Lines of Business)
- Covered Genetic Testing (Medicare Only)

Genetic Counseling (For all lines of Business)

- I. The following general genetic counseling criteria must be met prior to genetic testing:
 - A. Provider is a board-eligible or board-certified genetic counselor or board-certified physician with training and ongoing experience in genetics* (see <u>Policy Guidelines</u> section below for complete list of appropriate providers); **and**
 - B. A full personal and family history has been conducted and is documented (when applicable); **and**
 - C. Genetic testing information and pre-test counseling has been provided and is documented; **and**
 - D. Patient has undergone and signed informed consent for genetic testing; and

E. Post-test counseling to review the test results and determine future evaluation, medical management and treatment plans has been discussed and will be scheduled, if applicable.

General Criteria for Genetic Testing (All Lines of Business)

For genetic testing not addressed in other, more specific PHP Medical Policies, the following medical necessity criteria may be applied:

- II. Genetic testing may be considered **medically necessary and covered** when <u>ALL</u> of the following criteria (A.-D) are met:
 - A. The genetic counseling requirements above (criteria I.) have been met; and
 - B. The individual being tested meets **either** of the following criteria:
 - 1. The patient is symptomatic and the clinical presentation is consistent with a known condition; **or**
 - 2. The individual is asymptomatic and meets **either** of the following criteria:
 - a. Individual has a first-degree blood relative (parent, sibling, or child) diagnosed with a condition **and** the affected relative has not had genetic testing and is unavailable for testing; **or**
 - b. Testing is for a known pathogenic mutation confirmed in an affected firstdegree blood relative (parent, sibling, or child); **and**
 - C. The condition being tested for is associated with increased morbidity or reduced lifeexpectancy; **and**
 - D. Clinical utility must be established for each gene and/or component of the test, including **both** of the following (1. and 2.):
 - Testing allows for a definitive diagnosis or risk classification when other clinical and/or laboratory tests were inconclusive or avoids more invasive diagnostic testing (i.e., muscle biopsy); and
 - 2. Testing results will guide decision(s) in clinical management (predictive, diagnostic, prognostic, or therapeutic).
- III. Genetic testing is considered **investigational and is not covered** when the above criteria II. are not met, including but not limited to general population-based screening.
- IV. In patients 17 years of age or younger, genetic testing for adult-onset genetic conditions, in which treatment management occurs after 18 years of age, is considered **not medically necessary and is not covered**.

Covered Genetic Testing (All Lines of Business)

Hereditary Hearing Loss

V. Genetic testing for GJB2 and/or GJB6 is considered **medically necessary and covered** for diagnosis or management of hereditary hearing loss.

Li Fraumeni Syndrome

- VI. For <u>non-Medicare members</u>, genetic testing of the TP53 gene may be considered **medically necessary and covered** for evaluation and diagnosis of Li-Fraumeni syndrome when **any of one** of the following are met:
 - A. Individual from a family with a known TP53 mutation; or
 - B. Classic Li-Fraumeni Syndrome criteria are met, including **all** of the following (1. -3.):
 - 1. Combination of an individual diagnosed < age 45 y with a sarcoma; and
 - 2. A first degree relative diagnosed < age 45 y with cancer; and
 - 3. An additional first- or second-degree relative in the same lineage with cancer diagnosed < age 45 y, or a sarcoma at any age; **or**
 - C. Chompret criteria are met, including **any one** of the following (1. -3.):
 - 1. Individual meets both of the following criteria (a. or b.):
 - a. Individual with a tumor from LFS tumor spectrum (e.g. soft tissue sarcoma, osteosarcoma, brain tumor, breast cancer, adrenocortical carcinoma, leukemia, lung bronchoalveolar cancer) before age of 46 years, **and**
 - At least one first- or second-degree relative with any of the aforementioned cancers (other than breast cancer if the proband has breast cancer) before the age of 56 years or with multiple primaries at any age; or
 - 2. Individual with multiple tumors (except multiple breast tumors), two of which belong to LFS tumor spectrum with the initial cancer occurring before the age of 46 years; **or**
 - 3. Individual with adrenocortical carcinoma or choroid plexus carcinoma at any age of onset, regardless of the family history; **or**
 - 4. Individual with breast cancer before 31 years.
- VII. For <u>non-Medicare members</u>, genetic testing of the TP53 gene is considered **investigational and not covered** for all other indications, including but not limited to when the above criteria (VI.) are not met.
- VIII. For <u>Medicare members</u>, TP53 gene testing is considered **not medically necessary and not** covered.^{1,2}

Long QT Syndrome (LQTS)

IX. Genetic testing for LQTS may be considered medically necessary and covered in patients who do not meet clinical criteria for LQTS (e.g., Schwartz score <4) but who do meet one or more of the following criteria: Note: Places see Policy Guidelines section below to saleulate the Schwartz score

Note: Please see <u>Policy Guidelines</u> section below to calculate the Schwartz score.

- A. A first-, second-, or third-degree relative with a known LQTS mutation; or
- B. A first-, second-, or third-degree relative diagnosed with LQTS by clinical means whose genetic status is unavailable; **or**

- C. Signs or symptoms indicating a moderate to high pretest probability of LQTS (e.g., Schwartz score of 2-3).
- X. Genetic testing for LQTS is considered **investigational and not covered** when criterion IX. is not met, including but not limited to:
 - A. To determine prognosis and/or direct therapy in patients with known LQTS
 - B. For screening of the general population

Microarray Testing

- XI. Microarray testing may be considered **medically necessary and covered** when both of the following criteria are met:
 - A. The patient must be under the care of a pediatric geneticist or developmental pediatrician who is the ordering physician; **and**
 - B. This patient must have **either** of the following conditions:
 - 1. Have unexplained developmental delay/intellectual disability; or
 - 2. Have multiple congenital anomalies.

Note: This policy does not address microarray testing for reproductive planning and prenatal purposes. Please see Genetic Testing: Reproductive Planning and Prenatal Testing policies in the <u>Cross References</u> section below.

Non-Covered Genetic Testing (All Lines of Business)

- XII. The following are tests are considered **investigational and are not covered** due to lack of evidence of clinical benefit:
 - A. FirstStep Dx Plus
 - B. Genomic testing for Hematological Oncology Indications
 - C. MTHFR gene (This policy does not address MTHFR testing for inherited thrombophilias. Please see the Genetic Testing: Inherited Thrombophilias policies in the Cross References section below.)
- XIII. Direct-to-consumer genetic tests are considered **investigational and not covered** for any situation or indication. (Please see <u>Description</u> section below for more information.)
- XIV. Genetic panel testing is considered **investigational and not covered** if any component of the panel is considered investigational or not medically necessary.

Covered Genetic Testing (Medicare Only)

This section of the policy is based on several Centers for Medicare & Medicaid Services (CMS) Local Coverage Determinations (LCDs) and Local Coverage Articles (LCAs). Please refer to test-specific

ME	DI	CAL	PO	LICY

CMS guidance documents for covered ICD-10 codes and medical necessity criteria when indicated. This CMS guidance was identified as of the last policy review date on 06/24/2020.

XIII. The following genetic panel tests may be considered **medically necessary and covered** for Medicare members:

- A. <u>CancerTYPE ID® (Biotheranostics)</u>: Covered for specific diagnosis codes only. LCAs: <u>A54388</u>, <u>L36256</u>^{3,4}
- B. <u>OncotypeDx Colon Cancer (Genomic Health)</u>: Covered for specific diagnosis codes only. LCAs: <u>A54486⁵</u>
- C. <u>Tissue of Origin[®] (TOO[®]) (Cancer Genetics Inc., previously known as ResponseDX)</u>: Covered for specific diagnosis codes only. LCAs: <u>A54496</u>, <u>A55204</u>.^{6,7}

POLICY GUIDELINES

*Genetic Counseling Requirements

Genetic studies and counseling are approved subject to benefits when there is a medical condition that requires genetic counseling and potential subsequent testing to diagnose or to aid in planning a treatment course. Identification of a genetic disorder should result in medical and/or surgical management that is corrective and/or therapeutic in nature.

Prior to authorization of a genetic test, the member must have undergone pretest counseling by a certified genetic counselor or a provider trained in genetics. A provider trained in genetics is defined as providing risk assessment on a regular basis and having received specialized ongoing training in genetics. Education limited to learning how to order a test is not considered adequate training for risk assessment and genetic counseling. The provider may be required to provide documentation of genetic training and ongoing continual medical education (CME). Examples of providers trained in genetic counseling or genetics are:

- Board-Eligible or Board-Certified Genetic Counselor (CGC)
- Advanced Genetics Nurse (AGN-BC), Genetic Clinical Nurse (GCN)
- Advanced Practice Nurse in Genetics (APNG)
- Board-Eligible or Board-Certified Clinical Geneticist
- Board-Certified physician with training and ongoing experience in genetics (e.g., obstetriciangynecologist; surgical oncologist; medical oncologist; fellowship-trained surgeon, pediatrician, family medicine.)

Clinical Utility

Clinical utility of any genetic test is established by evaluating the following components of the test:

- Eliminates the need for further clinical workup or invasive testing
- Leads to changes in clinical management of the condition that improve outcomes
- Leads to discontinuation of interventions that are unnecessary and/or ineffective

- Leads to initiation of effective medication(s) and/or changes in dosing of a medication that is likely to improve outcomes
- Leads to discontinuation of medications that are ineffective or harmful
- Provides prognostic information not revealed by standard laboratory and/or clinical testing that reclassifies patients into clinically relevant prognostic categories for which there are different treatment strategies

General Principles of Genetic Testing

All genetic tests must be Food and Drug Administration (FDA)-approved and/or performed in a Clinical Laboratory Improvement Amendments (CLIA)-accredited laboratory.

Schwartz score diagnostic criteria for long QT syndrome (LQTS)⁸

		Points
Electro	cardiographic findings*	
Α.	QTc [¶]	
	■ ≥480 ms	3
	 460 to 479 ms 	2
	 450 to 459 ms (in males) 	1
В.	QTc [¶] fourth minute of recovery from exercise stress test ≥480 ms	1
C.	Torsades de pointes [△]	2
D.	T wave alternans	1
E.	Notched T wave in 3 leads	1
F.	Low heart rate for age [◊]	0.5
Clinica	l history	
Α.	Syncope [∆]	
	With stress	2
	Without stress	1
В.	Congenital deafness	0.5
Family	history	
A.	Family members with definite LQTS [§]	1
В.	Unexplained sudden cardiac death below age 30 among immediate family members [§]	0.5

Score:

- ≤1 point = low probability of long QT syndrome (LQTS).
- 1.5 to 3 points = intermediate probability of LQTS.
- \geq 3.5 points = high probability of LQTS.

Key:

* In the absence of medications or disorders known to affect these electrocardiographic features.

¶ QTc calculated by Bazett's formula where QTc = QT/VRR.

 Δ Mutually exclusive.

◊ Resting heart rate below the second percentile for age.

§ The same family member cannot be counted in A and B.

BILLING GUIDELINES

Some, but not all genetic tests may have a specific CPT or HCPCS code assigned. Some panels may be billed with unlisted codes (e.g.81479 or 81599) while others may be billed with multiple gene-specific and/or molecular pathology procedure codes (81400-81408).

CPT/HCPCS CODES

Note: Codes which may be billed for genetic testing addressed in this policy include, but are not limited to, the following:

All Lines of Business		
Prior Aut	thorization Required	
0081U	TERMED 12/31/19	
	Oncology (uveal melanoma), mRNA, gene-expression profiling by real-time RT-PCR of 15	
	genes (12 content and 3 housekeeping genes), utilizing fine needle aspirate or formalin-	
	fixed paraffin-embedded tissue, algorithm reported as risk of metastasis	
0195U	KLF1 (Kruppel-like factor 1), targeted sequencing (ie, exon 13)	
	CACNA1A (calcium voltage-gated channel subunit alpha 1A) (eg, spinocerebellar ataxia),	
	full gene analysis, including small sequence changes in exonic and intronic regions,	
	deletions, duplications, short tandem repeat (STR) gene expansions, mobile element	
0231U	insertions, and variants in non-uniquely mappable regions	
	CSTB (cystatin B) (eg, progressive myoclonic epilepsy type 1A, Unverricht-Lundborg	
	disease), full gene analysis, including small sequence changes in exonic and intronic	
	regions, deletions, duplications, short tandem repeat (STR) expansions, mobile element	
0232U	insertions, and variants in non-uniquely mappable regions	
	FXN (frataxin) (eg, Friedreich ataxia), gene analysis, including small sequence changes in	
	exonic and intronic regions, deletions, duplications, short tandem repeat (STR)	
0233U	expansions, mobile element insertions, and variants in non-uniquely mappable regions	
	MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome), full gene analysis, including	
	small sequence changes in exonic and intronic regions, deletions, duplications, mobile	
0234U	element insertions, and variants in non-uniquely mappable regions	

0235U	PTEN (phosphatase and tensin homolog) (eg, Cowden syndrome, PTEN hamartoma tumor syndrome), full gene analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, mobile element insertions, and variants in non-uniquely mappable regions
0236U	SMN1 (survival of motor neuron 1, telomeric) and SMN2 (survival of motor neuron 2, centromeric) (eg, spinal muscular atrophy) full gene analysis, including small sequence changes in exonic and intronic regions, duplications and deletions, and mobile element insertions
0237U	Cardiac ion channelopathies (eg, Brugada syndrome, long QT syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia), genomic sequence analysis panel including ANK2, CASQ2, CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNQ1, RYR2, and SCN5A, including small sequence changes in exonic and intronic regions, deletions, duplications, mobile element insertions, and variants in non-uniquely mappable regions
0238U	Oncology (Lynch syndrome), genomic DNA sequence analysis of MLH1, MSH2, MSH6, PMS2, and EPCAM, including small sequence changes in exonic and intronic regions, deletions, duplications, mobile element insertions, and variants in non-uniquely mappable regions
81105	Human Platelet Antigen 1 genotyping (HPA-1), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa], antigen CD61 [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-1a/b (L33P)
81106	Human Platelet Antigen 2 genotyping (HPA-2), GP1BA (glycoprotein lb [platelet], alpha polypeptide [GPIba]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post- transfusion purpura), gene analysis, common variant, HPA-2a/b (T145M)
81107	Human Platelet Antigen 3 genotyping (HPA-3), ITGA2B (integrin, alpha 2b [platelet glycoprotein IIb of IIb/IIIa complex], antigen CD41 [GPIIb]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-3a/b (I843S)
81108	Human Platelet Antigen 4 genotyping (HPA-4), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa], antigen CD61 [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-4a/b (R143Q)
81109	Human Platelet Antigen 5 genotyping (HPA-5), ITGA2 (integrin, alpha 2 [CD49B, alpha 2 subunit of VLA-2 receptor] [GPIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant (eg, HPA-5a/b (K505E))
81110	Human Platelet Antigen 6 genotyping (HPA-6w), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa, antigen CD61] [GPIIIa]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-6a/b (R489Q)
81111	Human Platelet Antigen 9 genotyping (HPA-9w), ITGA2B (integrin, alpha 2b [platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41] [GPIIb]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-9a/b (V837M)
81112	Human Platelet Antigen 15 genotyping (HPA-15), CD109 (CD109 molecule) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-15a/b (S682Y)
81120	IDH1 (isocitrate dehydrogenase 1 [NADP+], soluble) (eg, glioma), common variants (eg, R132H, R132C)

MED	ICAL	POL	ICY
	ICAL		

81161	DMD (dystrophin) (eg, Duchenne/Becker muscular dystrophy) deletion analysis, and duplication analysis, if performed
81163	BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (eg,
	hereditary breast and ovarian cancer) gene analysis; full sequence analysis
81165	BRCA1 (BRCA1, DNA repair associated) (eg, hereditary breast and ovarian cancer) gene
	analysis; full sequence analysis
81171	AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental retardation 2 [FRAXE])
	gene analysis; evaluation to detect abnormal (eg, expanded) alleles
81172	AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental retardation 2 [FRAXE])
	gene analysis; characterization of alleles (eg, expanded size and methylation status)
81173	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X
	chromosome inactivation) gene analysis; full gene sequence
81174	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X
	chromosome inactivation) gene analysis; known familial variant
81175	ASXL1 (additional sex combs like 1, transcriptional regulator) (eg, myelodysplastic
	syndrome, myeloproliferative neoplasms, chronic myelomonocytic leukemia), gene
	analysis; full gene sequence
81176	ASXL1 (additional sex combs like 1, transcriptional regulator) (eg, myelodysplastic
	syndrome, myeloproliferative neoplasms, chronic myelomonocytic leukemia), gene
	analysis; targeted sequence analysis (eg, exon 12)
81177	ATN1 (atrophin 1) (eg, dentatorubral-pallidoluysian atrophy) gene analysis, evaluation to
	detect abnormal (eg, expanded) alleles
81178	ATXN1 (ataxin 1) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal
	(eg, expanded) alleles
81179	ATXN2 (ataxin 2) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal
	(eg, expanded) alleles
81180	ATXN3 (ataxin 3) (eg, spinocerebellar ataxia, Machado-Joseph disease) gene analysis,
01101	evaluation to detect abnormal (eg, expanded) alleles
81181	ATXN7 (ataxin 7) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal
04402	(eg, expanded) alleles
81182	ATXN80S (ATXN8 opposite strand [non-protein coding]) (eg, spinocerebellar ataxia) gene
01100	analysis, evaluation to detect abnormal (eg, expanded) alleles
81183	ATXINID (ataxin 10) (eg. spinocerebellar ataxia) gene analysis, evaluation to detect
0110/	CACNA1A (coloium voltage gated channel subunit alpha1 A) (og chineserebellar ataxia)
01104	cachara (calcium voltage-gated channel subunit alphara) (eg. spinocerebenal ataxia)
01105	CACNA1A (coloium voltage gated channel subunit alpha1 A) (og. crineserebellar ataxia)
01102	cachara (calcium voltage-galeu channel subunit alphara) (eg, spinocerebenar alaxia)
01106	CACNA1A (calcium voltage gated channel subunit alpha1 A) (og chineserebellar ataxia)
01100	gene analysis: known familial variant
81187	CNBP (CCHC-type zinc finger nucleic acid hinding protein) (ag. myotonic dystrophy type 2)
01107	gene analysis evaluation to detect abnormal (eg. expanded) alleles
81188	CSTB (cystatin B) (eg. Unverricht-Lundhorg disease) gene analysis: evaluation to detect
01100	abnormal (eg, expanded) alleles
81189	CSTB (cystatin B) (eg. Unverricht-Lundborg disease) gene analysis: full gene sequence

Page 10 of 24

81190	CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis; known familial variant(s)
81204	AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X chromosome inactivation) gene analysis; characterization of alleles (eg, expanded size or methylation status)
81219	CALR (calreticulin)(eg myeloproliferative disorders, gene analysis, common variants in exon 9)
81228	Cytogenomic constitutional (gnome-wide) microarray analysis; interrogation of genomic common variants regions for copy number variants (e.g. Bacterial Artificial Chromosome [BAC] or oligo-based comparative genomic hybridization[CGH] microarray analysis)
81233	BTK (Bruton's tyrosine kinase) (eg, chronic lymphocytic leukemia) gene analysis, common variants (eg, C481S, C481R, C481F)
81234	DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene analysis; evaluation to detect abnormal (expanded) alleles
81236	EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) (eg, myelodysplastic syndrome, myeloproliferative neoplasms) gene analysis, full gene sequence
81237	EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) (eg, diffuse large B- cell lymphoma) gene analysis, common variant(s) (eg, codon 646)
81238	F9 (coagulation factor IX) (eg, hemophilia B), full gene sequence
81239	DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene analysis; characterization of alleles (eg, expanded size)
81247	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; common variant(s) (eg, A, A-)
81248	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; known familial variant(s)
81249	G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; full gene sequence
81250	G6PC (glucose-6-phosphatase, catalytic subunit) (e.g., Glycogen storage disease, type 1a, von Gierke disease) gene analysis, common variants (e.g., R83C, Q347X)
81256	HFE (hemochromatosis) (e.g. hereditary hemochromatosis) gene analysis, common variants (e.g. C282Y, H63D)
81257	HBA1/HBA2 (alpha globin 1 and alpha globin 2)(e.g. alpha thalsemmia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis, for common deletions or variant (e.g., Southeast Asian, Thai, Filipino, Mediterranean, alpha3.7, alpha20.5, and Constant Spring)
81258	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; known familial variant
81259	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; full gene sequence
81269	HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; duplication/deletion variants
81271	HTT (huntingtin) (eg, Huntington disease) gene analysis; evaluation to detect abnormal (eg, expanded) alleles
81274	HTT (huntingtin) (eg, Huntington disease) gene analysis; characterization of alleles (eg, expanded size)

MEDICAL POLICY		Genetic Studies and Counseling
81284	FXN (frataxin) (eg, Friedreich ataxia) g (expanded) alleles	ene analysis; evaluation to detect abnormal
81285	FXN (frataxin) (eg, Friedreich ataxia) g expanded size)	ene analysis; characterization of alleles (eg,
81286	FXN (frataxin) (eg, Friedreich ataxia) g	ene analysis; full gene sequence
81289	FXN (frataxin) (eg, Friedreich ataxia) g	ene analysis; known familial variant(s)
81305	MYD88 (myeloid differentiation prima macroglobulinemia, lymphoplasmacy variant	ary response 88) (eg, Waldenstrom's tic leukemia) gene analysis, p.Leu265Pro (L265P)
81311	NRAS (neuroblastoma RAS viral [v-ras gene analysis, variants in exon 2 (eg, o] oncogene homolog) (eg, colorectal carcinoma), codons 12 and 13) and exon 3 (eg, codon 61)
81315	PML/RARalpha, (t(15;17)), (promyeloc promyelocytic leukemia) translocation intron 6), qualitative or quantitative	cytic leukemia/retinoic acid receptor alpha) (eg, n analysis; common breakpoints (eg, intron 3 and
81316	PML/RARalpha, (t(15;17)), (promyeloc promyelocytic leukemia) translocation exon 6), qualitative or quantitative	cytic leukemia/retinoic acid receptor alpha) (eg, n analysis; single breakpoint (eg, intron 3, intron 6 or
81312	PABPN1 (poly[A] binding protein nucl gene analysis, evaluation to detect ab	ear 1) (eg, oculopharyngeal muscular dystrophy) normal (eg, expanded) alleles
81321	PTEN (phosphatase and tensin)(e.g., C syndrome) gene analysis; full sequence	Cowden Syndrome, PTEN hamartoma tumor se analysis
81322	PTEN (phosphatase and tensin)(e.g., C syndrome) gene analysis; known fami	Cowden Syndrome, PTEN hamartoma tumor lial variant
81323	PTEN (phosphatase and tensin)(e.g., C syndrome) gene analysis; duplication/	Cowden Syndrome, PTEN hamartoma tumor 'deletion variant
81324	PMP22 (peripheral myelin protein 22) with liability to pressure palsies) gene	(e.g., Charcot-Marie-Tooth hereditary neuropathy analysis; duplication/deletion analysis
81325	PMP22 (peripheral myelin protein 22) with liability to pressure palsies) gene	(e.g., Charcot-Marie-Tooth hereditary neuropathy analysis; full sequence
81326	PMP22 (peripheral myelin protein 22) with liability to pressure palsies) gene	(e.g., Charcot-Marie-Tooth hereditary neuropathy analysis; know familial variant
81327	SEPT9 (Septin9) (eg, colorectal cancer) methylation analysis
81329	SMN1 (survival of motor neuron 1, te dosage/deletion analysis (eg, carrier t centromeric) analysis, if performed	omeric) (eg, spinal muscular atrophy) gene analysis; esting), includes SMN2 (survival of motor neuron 2,
81331	SNRPN/UBE3A (small nuclear ribonuc ligase E3A) (e.g., Prader-Willi syndror	leoprotein polypeptide N and Ubiquitin protein ne and/or Angelman syndrome methylation analysis
81332	SERPINA 1 (serpin peptidase inhibitor and *Z)	, clade A, alpha-1 antiproteinase variants (e.g., *S
81333	TGFBI (transforming growth factor be common variants (eg, R124H, R124C,	ta-induced) (eg, corneal dystrophy) gene analysis, R124L, R555W, R555Q)
81334	RUNX1 (runt related transcription factorial disorder with associated myeloid malic (eg, exons 3-8)	tor 1) (eg, acute myeloid leukemia, familial platelet ignancy), gene analysis, targeted sequence analysis

Г

М	FD	ICAL	POI	ICY
1.41			101	

81336	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; full gene sequence
81337	SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis;
Q12//2	REPRIZE (protein phosphatase 2 regulatory subunit Rheta) (eg. spinocerebellar atavia)
01343	gene analysis, evaluation to detect abnormal (eg, expanded) alleles
81344	TBP (TATA box binding protein) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles
81345	TERT (telomerase reverse transcriptase) (eg, thyroid carcinoma, glioblastoma multiforme)
	gene analysis, targeted sequence analysis (eg, promoter region)
81347	SF3B1 (splicing factor [3b] subunit B1) (eg, myelodysplastic syndrome/acute myeloid
	leukemia) gene analysis, common variants (eg, A672T, E622D, L833F, R625C, R625L)
81348	SRSF2 (serine and arginine-rich splicing factor 2) (eg, myelodysplastic syndrome, acute
	myeloid leukemia) gene analysis, common variants (eg, P95H, P95L)
81357	U2AF1 (U2 small nuclear RNA auxiliary factor 1) (eg, myelodysplastic syndrome, acute
	myeloid leukemia) gene analysis, common variants (eg, S34F, S34Y, Q157R, Q157P)
81400	Molecular pathology procedure, Level 1 (e.g., identification of single germline variant
	[e.g., SNP] by techniques such as restriction enzyme digestion or melt curve analysis)
81401	Molecular pathology procedure, Level 2 (e.g., 2-10 SNPs, 1 methylated variant, or 1
	somatic variant [typically using nonsequencing target variant analysis], or detection of a
	dynamic mutation disorder/triplet repeat)
81402	Molecular pathology procedure, level 3 (e.g.,>10 SNPs, 2-10 methylated variants, or 2-10
	somatic variants [typically using non-sequencing target variant analysis], immunoglobulin
	and T-cell receptor gene rearrangements, duplication/deletion variants 1 exon)
81403	Molecular pathology procedure, level 4 (e.g. analysis of single exon by DNA sequence
	analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent
	reactions, mutation scanning or duplication/deletion variants of 2-5 exons
81404	Molecular pathology procedure, level 5 (e.g., analysis of 2-5 exons by DNA sequence
	analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or
	characterization of a dynamic mutation disorder /triplet repeat by southern blot analysis
81405	Molecular pathology procedure, level 6 (e.g., analysis of 6-10 exons by DNA sequence
	analysis, mutation scanning or duplication/deletion variants of 11-25 exons)
81406	Molecular pathology procedure, Level 7 (e.g., analysis of 11-25 exons by DNA sequence
	analysis, mutation scanning or duplication/deletion variants of 26-50 exons, cytogenomic
01407	array analysis for neoplasia)
81407	Molecular pathology procedure, level 8 (e.g., analysis of 26-50 exons by DNA sequence
	analysis, mutation scanning or duplication/deletion variants of >50 exons, sequence
01100	Analysis of multiple genes on one platform)
81408	molecular pathology, level 9 (e.g., analysis of >50 exons in a single gene by DNA sequence
	allalysis <i>)</i>
81413	Cardiac ion channelopathies (eg, Brugada syndrome, long QT syndrome, short QT
	syndrome, catecholaminergic polymorphic ventricular tachycardia); genomic sequence
	analysis panel, must include sequencing of at least 10 genes, including ANK2, CASQ2,
	CAV3, KCNE1, KCNE2, KCNH2, KCNJ2, KCNQ1, RYR2, and SCN5A

	MEDICAL POLICY	Genetic Studies and Counseling
81414	Cardiac ion channelopathies (eg, Brug syndrome, catecholaminergic polymo gene analysis panel, must include ana KCNQ1	ada syndrome, long QT syndrome, short QT rphic ventricular tachycardia); duplication/deletion lysis of at least 2 genes, including KCNH2 and
81415	Exome (eg, unexplained constitutiona analysis	l or heritable disorder or syndrome); sequence
81416	Exome (eg, unexplained constitutiona analysis, each comparator exome (eg, code for primary procedure)	l or heritable disorder or syndrome); sequence parents, siblings) (List separately in addition to
81417	Exome (eg, unexplained constitutiona of previously obtained exome sequen condition/syndrome)	l or heritable disorder or syndrome); re-evaluation ce (eg, updated knowledge or unrelated
81419	Epilepsy genomic sequence analysis p CDKL5, CHD2, GABRG2, GRIN2A, KCN SCN2A, SCN8A, SLC2A1, SLC9A6, STXE	anel, must include analyses for ALDH7A1, CACNA1A, Q2, MECP2, PCDH19, POLG, PRRT2, SCN1A, SCN1B, P1, SYNGAP1, TCF4, TPP1, TSC1, TSC2, and ZEB2
81430	Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred syndrome); genomic sequence analysis panel, must include sequencing of at least 60 genes, including CDH23, CLRN1, GJB2, GPR98, MTRNR1, MYO7A, MYO15A, PCDH15, OTOF, SLC26A4, TMC1, TMPRSS3, USH1C, USH1G, USH2A, and WFS1	
81431	Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred syndrome); duplication/deletion analysis panel, must include copy number analyses for STRC and DFNB1 deletions in GJB2 and GJB6 genes	
81434	Hereditary retinal disorders (eg, retin rod dystrophy), genomic sequence an genes, including ABCA4, CNGA1, CRB2 RP1, RP2, RPE65, RPGR, and USH2A	itis pigmentosa, Leber congenital amaurosis, cone- alysis panel, must include sequencing of at least 15 L, EYS, PDE6A, PDE6B, PRPF31, PRPH2, RDH12, RHO,
81437	Hereditary neuroendocrine tumor dis parathyroid carcinoma, malignant pho sequence analysis panel, must include SDHB, SDHC, SDHD, TMEM127, and V	orders (eg, medullary thyroid carcinoma, eochromocytoma or paraganglioma); genomic e sequencing of at least 6 genes, including MAX, HL
81438	Hereditary neuroendocrine tumor dis parathyroid carcinoma, malignant pho duplication/deletion analysis panel, m VHL	orders (eg, medullary thyroid carcinoma, eochromocytoma or paraganglioma); nust include analyses for SDHB, SDHC, SDHD, and
81439	Hereditary cardiomyopathy (eg, hype arrhythmogenic right ventricular card must include sequencing of at least 5 MYH7, PKP2, TTN)	rtrophic cardiomyopathy, dilated cardiomyopathy, iomyopathy), genomic sequence analysis panel, cardiomyopathy-related genes (eg, DSG2, MYBPC3,
81442	Noonan spectrum disorders (eg, Noor Costello syndrome, LEOPARD syndror analysis panel, must include sequenci KRAS, MAP2K1, MAP2K2, NRAS, PTPN	nan syndrome, cardio-facio-cutaneous syndrome, ne, Noonan-like syndrome), genomic sequence ng of at least 12 genes, including BRAF, CBL, HRAS, I11, RAF1, RIT1, SHOC2, and SOS1
81448	Hereditary peripheral neuropathies (genomic sequence analysis panel, mu neuropathy-related genes (eg, BSCL2,	eg, Charcot-Marie-Tooth, spastic paraplegia), st include sequencing of at least 5 peripheral GJB1, MFN2, MPZ, REEP1, SPAST, SPG11, SPTLC1)

	MEDICAL POLICY	Genetic Studies and Counseling	
81595	Cardiology (heart transplant), mRNA, PCR of 20 genes (11 content and 9 ho blood, algorithm reported as a rejection	gene expression profiling by real-time quantitative usekeeping), utilizing subfraction of peripheral on risk score	
S3870	Comparative genomic hybridization (cgh) microarray testing for developmental delay, autism spectrum disorder and/or intellectual disability		
No Pric	No Prior Authorization Required		
0023U	Oncology (acute myelogenous leukemia), DNA, genotyping of internal tandem duplication, p.D835, p.I836, using mononuclear cells, reported as detection or non-detection of FLT3 mutation and indication for or against the use of midostaurin		
0046U	FLT3 (fms-related tyrosine kinase 3) (eg, acute myeloid leukemia) internal tandem duplication (ITD) variants, quantitative		
81164	BRCA1 (BRCA1, DNA repair associated), BRCA2 (BRCA2, DNA repair associated) (eg, hereditary breast and ovarian cancer) gene analysis; full duplication/deletion analysis (ie, detection of large gene rearrangements)		
81166	BRCA1 (BRCA1, DNA repair associated analysis; full duplication/deletion anal) (eg, hereditary breast and ovarian cancer) gene ysis (ie, detection of large gene rearrangements)	
81167	BRCA2 (BRCA2, DNA repair associated) (eg, hereditary breast and ovarian cancer) gene analysis; full duplication/deletion analysis (ie, detection of large gene rearrangements)		
81218	CEBPA (CCAAT/enhancer binding prot gene analysis, full gene sequence	ein [C/EBP], alpha) (eg, acute myeloid leukemia),	
81229	Cytogenomic constitutional (gnome-w regions for copy number and single nu chromosomal abnormalities	vide) microarray analysis; interrogation of genomic ucleotide polymorphism (SNP) variants for	
81252	GJB2 (gap junction protein, beta 2, 26 gene analysis; full gene sequence	kDa, connexin 26) (eg, nonsyndromic hearing loss)	
81253	GJB2 (gap junction protein, beta 2, 26 gene analysis; known familial variants	kDa, connexin 26) (eg, nonsyndromic hearing loss)	
81254	GJB6 (gap junction protein, beta 6, 30 gene analysis, common variants (eg, 3 D13S1854)])	kDa, connexin 30) (eg, nonsyndromic hearing loss) 09kb [del(GJB6-D13S1830)] and 232kb [del(GJB6-	
81272	KIT (v-kit Hardy-Zuckerman 4 feline sa gastrointestinal stromal tumor [GIST], targeted sequence analysis (eg, exons	rcoma viral oncogene homolog) (eg, acute myeloid leukemia, melanoma), gene analysis, 8, 11, 13, 17, 18)	
81273	KIT (v-kit Hardy-Zuckerman 4 feline sa gene analysis, D816 variant(s)	rcoma viral oncogene homolog) (eg, mastocytosis),	
81301	Microsatellite instability analysis (e.g., syndrome) of markers for mismatch re comparison of neoplastic and normal	hereditary non-polyposis colorectal cancer, Lynch epair deficiency (e.g., BAT25, BAT26), includes tissue, if performed	
81314	PDGFRA (platelet-derived growth fact stromal tumor [GIST]), gene analysis, t	or receptor, alpha polypeptide) (eg, gastrointestinal targeted sequence analysis (eg, exons 12, 18)	
88241	Thawing and expansion of frozen cells	, each aliquot	
88245	Chromosome analysis for breakage sy exchange, 20-25 cells	ndromes; baseline sister chromatid	
88248	Chromosome analysis for breakage sy count 20 cells, 2 karyotypes (e.g., for a	ndromes; baseline breakage, score 50-100 cells, ataxia telangiectasia, fanconi anemia, fragile X)	

88249	Chromosome analysis for breakage syndromes; baseline breakage, score 100 cells,	
00264	clastogen stress (e.g. Diepoxybutane, mitomycin C, ionizing radiation, UV radiation	
88261	Chromosome analysis; count 5 cells, I karyotype, with banding	
88263	Chromosome analysis; count 45 cells for mosaicism, 2 Karyotypes, with banding	
88271	Molecular cytogenetics; DNA probe, each	
88272	Molecular cytogenetics; chromosomal in situ hybridization, analyze 3-5 cells (e.g. for derivatives and markers)	
88274	Molecular cytogenetics; interphase in situ hybridization, analyze 25-99 cells	
88275	Molecular cytogenetics; interphase in situ hybridization, analyze 100-300 cells	
88283	Chromosome analysis; additional specialized banding technique (e.g., NOR, C-banding)	
88285	Chromosome analysis; additional cells counted, each study	
88289	Chromosome analysis; additional high resolution study	
88291	Cytogenetics and molecular cytogenetics, interpretation and report	
S3844	DNA analysis of the connexin 26 gene (GJB2) for susceptibility to congenital, profound deafness	
Not Covered		
0049U	NPM1 (nucleophosmin) (eg, acute myeloid leukemia) gene analysis, quantitative	
81291	MTHFR (5,10-methylenetetrahydrofolate reductase) (e.g., hereditary hypercoagulability)	
81306	NUDT15 (nudix hydrolase 15) (eg. drug metabolism) gene analysis, common variant(s)	
	(eg, *2, *3, *4, *5, *6)	
81320	PLCG2 (phospholipase C gamma 2) (eg, chronic lymphocytic leukemia) gene analysis, common variants (eg, R665W, S707F, L845F)	
81535	Oncology (gynecologic), live tumor cell culture and chemotherapeutic response by DAPI	
	stain and morphology, predictive algorithm reported as a drug response score; first single drug or drug combination	
81536	Oncology (gynecologic), live tumor cell culture and chemotherapeutic response by DAPI	
	stain and morphology, predictive algorithm reported as a drug response score; each	
	additional single drug or drug combination (List separately in addition to code for primary	
04520	procedure)	
81538	Serum, prognostic and predictive algorithm reported as good versus poor overall survival	
Unliste	d Codes All unlisted codes will be reviewed for medical necessity, correct coding,	
and pricing at the claim level. If an unlisted code is billed related to services addressed in		
this poli	cy then prior-authorization is required.	
81479	Unlisted Molecular Pathology	
81599	Unlisted multianalyte assay with algorithmic analysis	
All Lines of Business Except Medicare		
Prior Authorization Required		

81121	IDH2 (isocitrate dehydrogenase 2 [NADP+], mitochondrial) (eg, glioma), common variants (eg, R140W, R172M)
81200	ASPA (aspartoacylase) (e.g., Canavan disease) gene analysis, common variants (e.g., E285A, Y231X)
81205	BCKDHB (branched-chain keto acid dehyrogenase E1, beta polypeptide) (e.g., Maple syrup urine disease) gene analysis, common variants (e.g., R183P, G278s, E422X)
81209	BLM (Bloom syndrome, RecQ helicase-like) (e.g., Bloom syndrome) gene analysis 2281 del6ins7 variant
81210	BRAF(v-raf murine sarcoma viral oncogene homolog B1) (e.g. Colon Cancer) gene analysis, V600E variant
81235	EGFR (Epidermal growth factor receptor)(EG, non-small cell lung cancer) gene analysis, common variants (EG, exon 19 LREA deletion, L858R, T790M, G719A, G719S, L861Q)
81242	FANCC (Fanconi anemia, complementation group C) (e.g., Fanconi Anemia, type C) gene analysis, common variant (e.g., IVS4=4A>T)
81243	FMR1 (Fragile X mental retardation 1) (e.g., fragile x mental retardation) gene analysis; evaluation to detect abnormal (e.g., expanded) alleles
81244	FMR1 (Fragile X mental retardation 1) (e.g., fragile X mental retardation) gene analysis; characterization of alleles (e.g., expanded size and methylation status)
81251	GBA (glucosidase, bets, acid) (e.g., Gaucher disease) gene analysis, common variants (e.g., N370S, 84GG, L444P, IVS2=1G>A)
81255	HEXA (hexosaminidase A [alpha polypeptide]) (e.g. Tay-Sachs disease) gene analysis common variants (e.g., 1278insTATC, 1421+1G>C, G269S)
81260	IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex- associated protein)(e.g. familial dysautonomia) gene analysis, common variants
81275	KRAS ((V-KI-RAS2 Kirsten Rat Sarcoma Viral Oncogene)(EG carcinoma) gene analysis, variants in codons 12 and 13
81276	KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; additional variant(s) (eg, codon 61, codon 146)
81290	MCOLN1 (mucolipin 1) (e.g., Mucolipidosis, Type IV) gene analysis, common variants (e.g. IVS3-2A>G, del6.4b)
81302	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; full sequence analysis
81303	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; known familial variant
81304	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; duplication/deletion variants 6 or exon 6), qualitative or quantitative
81330	SMPD1 (sphingomyelin phosphodiesterase 1, acid lysomal) (e.g., Niemann-Pick disease Type A) gene analysis, common variants (e.g., R496L, L302P, fsP330)
81361	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); common variant(s) (eg, HbS, HbC, HbE)
81362	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); known familial variant(s)
81363	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); duplication/deletion variant(s)
81364	HBB (hemoglohin, subunit beta) (eg. sickle cell anemia, beta thalassemia
51001	hemoglobinopathy): full gene sequence

	MEDICAL POLICY	Genetic Studies and Counseling
81412	Ashkenazi Jewish associated disorders fibrosis, familial dysautonomia, Fanco disease), genomic sequence analysis p including ASPA, BLM, CFTR, FANCC, G	s (eg, Bloom syndrome, Canavan disease, cystic ni anemia group C, Gaucher disease, Tay-Sachs banel, must include sequencing of at least 9 genes, BA, HEXA, IKBKAP, MCOLN1, and SMPD1
81443	Genetic testing for severe inherited conditions (eg, cystic fibrosis, Ashkenazi Jewish- associated disorders [eg, Bloom syndrome, Canavan disease, Fanconi anemia type C, mucolipidosis type VI, Gaucher disease, Tay-Sachs disease], beta hemoglobinopathies, phenylketonuria, galactosemia), genomic sequence analysis panel, must include sequencing of at least 15 genes (eg, ACADM, ARSA, ASPA, ATP7B, BCKDHA, BCKDHB, BLM, CFTR, DHCR7, FANCC, G6PC, GAA, GALT, GBA, GBE1, HBB, HEXA, IKBKAP, MCOLN1. PAH)	
Not Covered		
0037U	Targeted genomic sequence analysis, interrogation for sequence variants, g rearrangements, microsatellite instab	solid organ neoplasm, DNA analysis of 324 genes, ene copy number amplifications, gene ility and tumor mutational burden
81504	Oncology (tissue of origin), microarray utilizing formalin-fixed paraffin-embed scores	<pre>r gene expression profiling of > 2000 genes, dded tissue, algorithm reported as tissue similarity</pre>
81525	Oncology (colon), mRNA, gene expres content and 5 housekeeping), utilizing algorithm reported as a recurrence sc	sion profiling by real-time RT-PCR of 12 genes (7 g formalin-fixed paraffin-embedded tissue, ore
81540	Oncology (tumor of unknown origin), PCR of 92 genes (87 content and 5 ho and subtype, utilizing formalin-fixed p probability of a predicted main cancer	mRNA, gene expression profiling by real-time RT- usekeeping) to classify tumor into main cancer type paraffin-embedded tissue, algorithm reported as a r type and subtype
Medicar	e Only	
Prior Aut	thorization Required	
0244U	Oncology (solid organ), DNA, compreh for single-nucleotide variants, insertio rearrangements, tumor-mutational bu formalin-fixed paraffin-embedded tun	nensive genomic profiling, 257 genes, interrogation ns/deletions, copy number alterations, gene urden and microsatellite instability, utilizing nor tissue
No Prior	Authorization Required	
81121	IDH2 (isocitrate dehydrogenase 2 [NA variants (eg, R140W, R172M)	DP+], mitochondrial) (eg, glioma), common
81210	BRAF(v-raf murine sarcoma viral onco analysis. V600E variant	gene homolog B1) (e.g. Colon Cancer) gene
81235	EGFR (Epidermal growth factor recept	or)(EG, non-small cell lung cancer) gene analysis, eletion 18588 T790M G719A G719S 18610)
81245	FLT3 (fms-related tyrosine kinase 3) (e	eg, acute myeloid leukemia), gene analysis; internal exons 14, 15)
81246	FLT3 (fms-related tyrosine kinase 3) (e	eg, acute myeloid leukemia), gene analysis; tyrosine 5. 1836)
81275	KRAS ((V-KI-RAS2 Kirsten Rat Sarcoma variants in codons 12 and 13	Viral Oncogene)(EG carcinoma) gene analysis,

81276	KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; additional variant(s) (eg. codon 61. codon 146)
81504	Oncology (tissue of origin), microarray gene expression profiling of > 2000 genes, utilizing formalin-fixed paraffin-embedded tissue, algorithm reported as tissue similarity scores
81525	Oncology (colon), mRNA, gene expression profiling by real-time RT-PCR of 12 genes (7 content and 5 housekeeping), utilizing formalin-fixed paraffin-embedded tissue, algorithm reported as a recurrence score
81540	Oncology (tumor of unknown origin), mRNA, gene expression profiling by real-time RT- PCR of 92 genes (87 content and 5 housekeeping) to classify tumor into main cancer type and subtype, utilizing formalin-fixed paraffin-embedded tissue, algorithm reported as a probability of a predicted main cancer type and subtype
Not Cov	ered
81200	ASPA (aspartoacylase) (e.g., Canavan disease) gene analysis, common variants (e.g., E285A, Y231X)
81205	BCKDHB (branched-chain keto acid dehyrogenase E1, beta polypeptide) (e.g., Maple syrup urine disease) gene analysis, common variants (e.g., R183P, G278s, E422X)
81209	BLM (Bloom syndrome, RecQ helicase-like) (e.g., Bloom syndrome) gene analysis 2281 del6ins7 variant
81242	FANCC (Fanconi anemia, complementation group C) (e.g., Fanconi Anemia, type C) gene analysis, common variant (e.g., IVS4=4A>T)
81243	FMR1 (Fragile X mental retardation 1) (e.g., fragile x mental retardation) gene analysis; evaluation to detect abnormal (e.g., expanded) alleles
81244	FMR1 (Fragile X mental retardation 1) (e.g., fragile X mental retardation) gene analysis; characterization of alleles (e.g., expanded size and methylation status)
81251	GBA (glucosidase, bets, acid) (e.g., Gaucher disease) gene analysis, common variants (e.g., N370S, 84GG, L444P, IVS2=1G>A)
81255	HEXA (hexosaminidase A [alpha polypeptide]) (e.g. Tay-Sachs disease) gene analysis common variants (e.g., 1278insTATC, 1421+1G>C, G269S)
81260	IKBKAP (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex- associated protein)(e.g. familial dysautonomia) gene analysis, common variants
81290	MCOLN1 (mucolipin 1) (e.g., Mucolipidosis, Type IV) gene analysis, common variants (e.g. IVS3-2A>G, del6.4b)
81302	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; full sequence analysis
81303	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; known familial variant
81304	MECP2 (methyl CpG binding protein 2) (e.g., Rett syndrome) gene analysis; duplication/deletion variants 6 or exon 6), qualitative or quantitative
81330	SMPD1 (sphingomyelin phosphodiesterase 1, acid lysomal) (e.g., Niemann-Pick disease Type A) gene analysis, common variants (e.g., R496L, L302P, fsP330)
81361	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); common variant(s) (eg, HbS, HbC, HbE)
81362	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); known familial variant(s)

	MEDICAL POLICY	Genetic Studies and Counseling
81363	HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); duplication/deletion variant(s)	
81364	HBB (hemoglobin, subunit beta) (eg, s hemoglobinopathy); full gene sequen	sickle cell anemia, beta thalassemia, ce
81412	Ashkenazi Jewish associated disorder fibrosis, familial dysautonomia, Fanco disease), genomic sequence analysis including ASPA, BLM, CFTR, FANCC, G	s (eg, Bloom syndrome, Canavan disease, cystic ni anemia group C, Gaucher disease, Tay-Sachs panel, must include sequencing of at least 9 genes, BA, HEXA, IKBKAP, MCOLN1, and SMPD1
81443	Genetic testing for severe inherited co associated disorders [eg, Bloom syndr mucolipidosis type VI, Gaucher diseas phenylketonuria, galactosemia), geno sequencing of at least 15 genes (eg, A CFTR, DHCR7, FANCC, G6PC, GAA, GA	onditions (eg, cystic fibrosis, Ashkenazi Jewish- rome, Canavan disease, Fanconi anemia type C, e, Tay-Sachs disease], beta hemoglobinopathies, mic sequence analysis panel, must include CADM, ARSA, ASPA, ATP7B, BCKDHA, BCKDHB, BLM, LT, GBA, GBE1, HBB, HEXA, IKBKAP, MCOLN1, PAH)

DESCRIPTION

A genetic test is "the analysis of human deoxyribonucleic acid (DNA), ribonucleic acid (RNA) Chromosomes, proteins, and certain metabolites in order to detect heritable disease-related genotypes, mutations, phenotypes, or karyotypes for clinical purposes". Genetic tests may be used to detect newborn or adult genetic disease. The tests should aid in the diagnosis or in the treatment of a disorder. Genetic tests should have proven analytical validity along with clinical utility and validity, as evidenced in peer-reviewed literature.

The following section describes some of the tests addressed in this policy.

Li Fraumeni Syndrome (LFS)

LFS is an extremely rare autosomal-dominant mutation of the p53 tumor suppressor gene. Persons with LFS have an approximately 25-fold increased risk of developing a malignant tumor by age 50 than the population average, and are at risk for a wide range of malignancies, with particularly high occurrences of breast cancer, brain tumors, acute leukemia, sarcomas and adrenal cortical carcinoma.

Long QT Syndrome (LQTS)

The Familion genetic panel test is one example of genetic testing for LQTS. This panel analyzes all coding exons of 5 major cardiac ion channel genes: KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3; BS1), KCNE1 (LQT5), and KCNE2 (LQT6). A family-specific analysis that provides an examination of a previously known familial variant is also available. The target population is individuals with suspected familial LQTS, as well as asymptomatic relatives of individuals who have tested positive for a genetic variant for one of the LQTS genes. Direct DNA sequencing is performed using the polymerase chain reaction (PCR), followed by sequence analysis using an automated DNA sequencer. A reference database is used to analyze the sequence traces for both heterozygous and homozygous variants.

MTHFR Gene

MEDICAL POLICY

The MTHFR gene provides instructions for making an enzyme called methylenetetrahydrofolate reductase. This enzyme plays a role in processing amino acids, the building blocks of proteins. Methylenetetrahydrofolate reductase is important for a chemical reaction involving forms of the B-vitamin folate (also called folic acid or vitamin B9). Specifically, this enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This reaction is required for the multistep process that converts the amino acid homocysteine to another amino acid, methionine. The body uses methionine to make proteins and other important compounds.

Polymorphisms in the MTHFR gene have also been studied as possible risk factors for a variety of common conditions. These include heart disease, stroke, high blood pressure (hypertension), an eye disorder called glaucoma, psychiatric disorders, and certain types of cancer. This test has been commonly ordered but there are no proven benefits from the MTHRF testing. Therefore, it remains unclear what role changes in the MTHFR gene play in determining the risk of these complex conditions.

Direct-to-Consumer Testing

Direct-to-consumer (DTC) testing, also known as self-testing, at-home testing, or over the counter testing, are genetic tests that are sold directly to individuals via the Internet, television, print advertisements or other marketing materials. DTC tests are bought and performed with little to no involvement of a physician, genetic counselor, or other healthcare professional. After the individual places the order, a test kit is mailed to the individual who collects a sample typically by buccal swab or saliva. The sample is returned by mail to the lab and the results are provided directly to the individual via a website, mail or telephone.

There are a number of government agencies, including the Centers for Disease Control and Prevention (CDC), the National Institutes of Health: National Library of Medicine (NIH:NLM), and the Federal Trade Commission (FTC) who have expressed concerns regarding the risks and limitations of DTC tests.⁹⁻¹¹ These concerns are supported by major medical associations, including the American College of Human genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP).^{12,13}

Concerns raised include lack of Clinical Laboratory Improvement Amendments (CLIA) accreditation for the testing laboratory and lack of appropriately educated (and board-certified) medical professionals employed by the company. There are also concerns that the limitations of the test will not be adequately explained to consumers, thereby allowing for medical and reproductive decisions without a complete understanding of the risks/benefits. In addition, there are security concerns regarding privacy and safety of personal and family information. Lastly, there is a paucity of evidence regarding the clinical utility of these tests.

OncotypeDx Colon Cancer

The OncotypeDx Colon Cancer test is a multigene expression assay for predicting recurrence of colon cancer, based on an individual patient's colon tumor expression of 12 genes, which quantifies the likelihood of recurrence in stage II colon cancer following surgery.

INSTRUCTIONS FOR USE

Company Medical Policies serve as guidance for the administration of plan benefits. Medical policies do not constitute medical advice nor a guarantee of coverage. Company Medical Policies are reviewed annually and are based upon published, peer-reviewed scientific evidence and evidence-based clinical practice guidelines that are available as of the last policy update. The Companies reserve the right to determine the application of Medical Policies and make revisions to Medical Policies at any time. Providers will be given at least 60-days notice of policy changes that are restrictive in nature.

The scope and availability of all plan benefits are determined in accordance with the applicable coverage agreement. Any conflict or variance between the terms of the coverage agreement and Company Medical Policy will be resolved in favor of the coverage agreement.

REGULATORY STATUS

Mental Health Parity Statement

Coverage decisions are made on the basis of individualized determinations of medical necessity and the experimental or investigational character of the treatment in the individual case. In cases where medical necessity is not established by policy for specific treatment modalities, evidence not previously considered regarding the efficacy of the modality that is presented shall be given consideration to determine if the policy represents current standards of care.

MEDICAL POLICY CROSS REFERENCES

- Genetic Testing: JAK2, CALR, and MPL (All Lines of Business Except Medicare), GT400
- Genetic Testing: JAK2, CALR, and MPL (Medicare Only), GT399
- Genetic Testing: CADASIL Disease (All Lines of Business Except Medicare), GT405
- Genetic Testing: CADASIL Disease (Medicare Only), GT406
- Genetic Testing: Hereditary Breast and Ovarian Cancer: Genetic Counseling and Testing (All Lines of Business Except Medicare), GT155
- Genetic Testing: Hereditary Breast and Ovarian Cancer: Genetic Counseling and Testing (Medicare Only), GT380
- Genetic Testing: Inherited Susceptibility to Colorectal Cancer (All Lines of Business Except Medicare), GT388
- Genetic Testing: Inherited Susceptibility to Colorectal Cancer (Medicare Only), GT413
- Genetic Testing: Inherited Thrombophilias (All Lines of Business except Medicare), GT401
- Genetic Testing: Inherited Thrombophilias (Medicare Only), GT402
- Genetic Testing: Non-Covered Genetic Panel Tests (All Lines of Business Except Medicare), GT235
- Genetic Testing: Non-Covered Genetic Panel Tests (Medicare Only), GT420
- Genetic Testing: Pharmacogenetic Testing (All Lines of Business Except Medicare), GT306
- Genetic Testing: Pharmacogenetic Testing (All Lines of Business Except Medicare), GT423
- Genetic Testing: Reproductive Planning and Prenatal Testing (All Lines of Business Except Medicare), GT236
- Genetic Testing: Reproductive Planning and Prenatal Testing (Medicare Only), GT384
- Genetic Testing: Whole Exome, Whole Genome and Proteogenomic Testing, GT389

REFERENCES

- Centers for Medicare & Medicaid Services. LCA A55221. LCA Title: MoIDX: TP53 Gene Test Coding and Billing Guidelines. Effective 01/01/2018. <u>https://www.cms.gov/medicare-coveragedatabase/details/article-</u> <u>details.aspx?articleId=55221&ver=8&SearchType=Advanced&CoverageSelection=Both&NCSelec</u> <u>tion=NCA%7cCAL%7cNCD%7cMEDCAC%7cTA%7cMCD&ArticleType=SAD%7cEd&PolicyType=Bot</u> <u>h&r=r10&KeyWord=tp53&KeyWordLookUp=Doc&KeyWordSearchType=Exact&kq=true&bc=IAA</u> AACAAAAA&. Accessed 3/2/2018.
- 2. Centers for Medicare & Medicaid Services. LCA A55487. LCA Title: MoIDX: TP53 Gene Test Billing and Coding Guidelines. Effective11/29/2017. <u>https://www.cms.gov/medicare-coveragedatabase/details/article-</u> <u>details.aspx?articleId=55487&ver=9&SearchType=Advanced&CoverageSelection=Both&NCSelec</u> <u>tion=NCA%7cCAL%7cNCD%7cMEDCAC%7cTA%7cMCD&ArticleType=SAD%7cEd&PolicyType=Bot</u> <u>h&r=r10&KeyWord=tp53&KeyWordLookUp=Doc&KeyWordSearchType=Exact&kq=true&bc=IAA</u> AACAAAAA&. Accessed 3/2/2018.
- 3. Centers for Medicare & Medicaid Services. Local Coverage Determination (LCD): MoIDX: Molecular Diagnostic Tests (MDT) (L36256). Revision Effective Date: For services performed on or after 11/01/2019. <u>https://www.cms.gov/medicare-coverage-database/details/lcd-</u> details.aspx?LCDId=36256. Accessed 06/24/2020.
- Centers for Medicare & Medicaid Services. Local Coverage Article: Billing and Coding: MoIDX: bioTheranostics Cancer TYPE ID[®] (A54388). Revision Effective Date: 11/01/2019. <u>https://www.cms.gov/medicare-coverage-database/details/article-details.aspx?articleId=54388</u>. Accessed 06/24/2020.
- Centers for Medicare & Medicaid Services. LCA A54486. LCA Title: MoIDX: Oncotype DX[®] Colon Cancer Coding and Billing Guidelines. Revision Effective Date: 11/01/2019. <u>https://www.cms.gov/medicare-coverage-database/details/article-details.aspx?articleId=54486</u>. Accessed 06/24/2020.
- 6. Centers for Medicare & Medicaid Services. LCA A55204. LCA Title: MolDx: ResponseDX Tissue of Origin® Coding and Billing Guidelines. Effective 10/01/2017. <u>https://www.cms.gov/medicarecoverage-database/details/article-</u> <u>details.aspx?articleId=55204&ver=11&SearchType=Advanced&CoverageSelection=Both&NCSele</u> <u>ction=NCA%7cCAL%7cNCD%7cMEDCAC%7cTA%7cMCD&ArticleType=SAD%7cEd&PolicyType=Bo</u> <u>th&r=r10&KeyWord=tissue+of+origin&KeyWordLookUp=Title&KeyWordSearchType=Exact&kq=</u> <u>true&bc=IAAAACAAAAA&</u>. Accessed 02/23/2018.
- 7. Centers for Medicare & Medicaid Services. LCA A54496. LCA Title: MolDx: ResponseDX Tissue of Origin[®] Billing and Coding Guidelines. Effective 10/01/2016. <u>https://www.cms.gov/medicarecoverage-database/details/article-</u> <u>details.aspx?articleId=54496&ver=9&SearchType=Advanced&CoverageSelection=Both&NCSelec</u> <u>tion=NCA%7cCAL%7cNCD%7cMEDCAC%7cTA%7cMCD&ArticleType=SAD%7cEd&PolicyType=Bot</u> <u>h&r=r10&KeyWord=tissue+of+origin&KeyWordLookUp=Title&KeyWordSearchType=Exact&kq=t</u> <u>rue&bc=IAAAACAAAAA&. Accessed 02/23/2018.</u>
- Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. *Circulation*. 2011;124(20):2181-2184.<u>https://www.ncbi.nlm.nih.gov/pubmed/22083145</u>

MEDICAL PO	LICY

- Centers for Disease Control and Prevention website. Office of Public Health Genomics. Direct to Consumer Genetic Testing. Published: 4/18/2017.
 https://blogs.cdc.gou/genomics/2017/04/18/direct to consumer 2/ Accessed 5/2/2018
 - https://blogs.cdc.gov/genomics/2017/04/18/direct-to-consumer-2/. Accessed 5/3/2018.
- 10. Federal Trade Commission (FTC) website. Consumer Information. Direct-to-Consumer Genetic Tests. Updated: February 2018. <u>https://www.consumer.ftc.gov/articles/0166-direct-consumer-genetic-tests</u>. Accessed 5/3/2018.
- 11. National Institutes of Health: National Library of Medicine (NIH:NLM). Genetics Hone Reference page. What is direct-to-consumer genetic testing? https://ghr.nlm.nih.gov/primer/testing/directtoconsumer. Accessed 5/3/2018.
- 12. Association for Molecular Pathology. Position Statement: Direct Access Genetic Testing (Direct to Consumer Genetic Testing). <u>https://www.amp.org/AMP/assets/File/position-</u>statements/2007/AMPDTCPositionStatement Final.pdf. Accessed 5/3/2018.
- American College of Medical Genetics and Genomics (ACMG). ACMG Statement. Direct-toconsumer genetic testing: a revised position statement of the American College of Medical Genetics and Genomics. Published: 12/17/2015. <u>https://www.acmg.net/docs/ACMG%20Revised%20DTC%20Statement%20AOP%20Dec%20201</u> <u>5.pdf</u>. Accessed 5/3/2018.