MEDICAL POLICY

Vitamin D Assay Testing

Effective Date: 3/1/2020

Section: LAB
Policy No: 372

Medical Policy Committee Approved Date: 10/11; 6/13; 6/14; 9/15; 6/16; 8/17; 5/18; 8/18; 8/19; 2/2020

See Policy CPT CODE section below for any prior authorization requirements

SCOPE:

Providence Health Plan, Providence Health Assurance, Providence Plan Partners, and Ayin Health Solutions as applicable (referred to individually as “Company” and collectively as “Companies”).

APPLIES TO:

All lines of business

BENEFIT APPLICATION

Medicaid Members

Oregon: Services requested for Oregon Health Plan (OHP) members follow the OHP Prioritized List and Oregon Administrative Rules (OARs) as the primary resource for coverage determinations. Medical policy criteria below may be applied when there are no criteria available in the OARs and the OHP Prioritized List.

POLICY CRITERIA

This policy is based on the Centers for Medicare & Medicaid Services Local Coverage Determination (LCD) L34051: Vitamin D Assay Testing.¹

Initial Testing

I. Measurement of 25-hydroxyvitamin D level [25(OH)D], CPT Code 82306, may be considered medically necessary and covered for patients with any of the following conditions:

A. Chronic kidney disease stage III or greater
B. Cirrhosis
C. Hypocalcemia
D. Hypercalcemia
E. Hypercalciuria
F. Hypervitaminosis D
G. Parathyroid disorders
H. Malabsorption states
I. Obstructive jaundice
J. Osteomalacia
K. Osteoporosis if:
 1. T score on DEXA scan <-2/5; or
 2. History of fragility fractures; or
 3. FRAX >3% (any fracture) with T-score <-1.5; or
 4. Initiating bisphosphoanate therapy (vitamin D level should be determined and managed as necessary before bisphosphoanate is initiated)
L. Osteosclerosis/petrosis
M. Rickets
N. Vitamin D deficiency on replacement therapy related to a condition listed above; to monitor the efficacy of treatment.

NOTE: Please refer to the LCD L34051 for the complete list of ICD-10 codes for indications in which 25-hydroxyvitamin D level [25(OH)D], CPT Code 82306, may be considered medically necessary.¹

II. Measurement of 25-hydroxyvitamin D level [25(OH)D], CPT Code 82306, is considered not medically necessary and not covered for diagnosis codes not listed in the Group 1 code table in the LCD L34051.

III. Measurement of 1,25-dihydroxyvitamin D[1,25(OH)2D], CPT code 82652, level may be considered medically necessary and covered for patients with any of the following conditions:

 A. Unexplained hypercalcemia (suspected granulomatous disease or lymphoma)
 B. Unexplained hypercalciuria (suspected granulomatous or lymphoma)
 C. Suspected genetic childhood rickets
 D. Suspected tumor induced osteomalacia
 E. Nephrolithiasis or hypercalciuria

NOTE: Please refer to the LCD L34051 for the complete list of ICD-10 codes for indications in which 1,25-dihydroxyvitamin D[1,25(OH)2D], CPT code 82652, may be considered medically necessary.¹

IV. Measurement of 1,25-dihydroxyvitamin D[1,25(OH)2D], CPT code 82652, is considered not medically necessary and not covered for diagnosis codes not listed in the Group 2 code table in the LCD L34051.

Repeat Testing

V. Repeat measurement of 25(OH)D or D[1,25(OH)2D] may be considered medically necessary and covered to ensure adequate vitamin D replacement has been accomplished if initial testing results in levels <20 ng/ml (50 nmol/liter).
VI. Repeat measurement of 25(OH)D or D[1,25(OH)2D] may be considered medically necessary and covered if level <20 ng/ml or > 60 ng/ml, a subsequent level(s) may be reimbursed until the level is within the normal range.

VII. Repeat measurement of 25(OH)D or D[1,25(OH)2D] is considered not medically necessary and not covered if vitamin D level is between 20 and 50 ng/ml and patient is clinically stable. (If performed, documentation must clearly indicate the necessity of the test.)

BILLING GUIDELINES

For a list of ICD-10 codes that are considered medically necessary for codes 82306 and 82652, please refer to the Group 1 codes and the Group 2 codes, respectively, in the Centers for Medicare & Medicaid Services Local Coverage Determination (LCD) L34051: Vitamin D Assay Testing.¹

Both assays of Vitamin D (25-OH vitamin D and 1,25-dihydroxy vitamin D) need not be performed for each of conditions listed in criterion I. or III, above. Documentation must justify the test(s) chosen for a particular disease entity. Various component sources of 25-OH vitamin D, such as stored D or diet-derived D, should not be billed separately.

Once a beneficiary has been shown to be vitamin D deficient, further testing may be medically necessary only to ensure adequate replacement has been accomplished. If vitamin D level is between 20 and 50 ng/ml and patient is clinically stable, repeat testing is often unnecessary; if performed, documentation must clearly indicate the necessity of the test.

Testing should be limited to no more than four per year.

CPT CODES

<table>
<thead>
<tr>
<th>All Lines of Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Prior Authorization Required</td>
</tr>
<tr>
<td>0038U Vitamin D, 25 hydroxy D2 and D3, by LC-MS/MS, serum microsample, quantitative</td>
</tr>
<tr>
<td>82306 Vitamin D; 25 hydroxy, includes fraction(s), if performed</td>
</tr>
<tr>
<td>82652 Vitamin D; 1, 25 dihydroxy, includes fraction(s), if performed</td>
</tr>
</tbody>
</table>

DESCRIPTION

Vitamin D is called a "vitamin" because of its exogenous source, predominately from oily fish in the form of vitamin D2 and vitamin D3. It is more accurate to consider fat-soluble vitamin D as a steroid hormone, synthesized by the skin and metabolized by the kidney to an active hormone, calcitriol. Clinical disorders related to vitamin D may arise because of altered availability of the parent vitamin D, altered conversion of vitamin D to its predominant metabolites, altered organ responsiveness to dihydroxylated
metabolites and disturbances in the interactions of the vitamin D metabolites with PTH and calcitonin. Normal levels of vitamin D range from 20 – 50 ng/ml.

The most common type of vitamin D deficiency is 25-OH vitamin D. A much smaller percentage of 1,25-dihydroxy vitamin D deficiency exists; mostly, in those with renal disease. Although it is not the active form of the hormone, 25-OH vitamin D is much more commonly measured because it better reflects the sum total of vitamin D produced endogenously and absorbed from the diet than does the level of the active hormone 1, 25-dihydroxy vitamin D. Deficiency of 1,25-dihydroxy vitamin D, which is present at much lower concentrations, does not necessarily reflect deficiency of 25-OH vitamin D and its measurement should be limited to the indications listed above.

REVIEW OF EVIDENCE

This policy is based on the Centers for Medicare & Medicaid Services Local Coverage Determination (LCD) L34051: Vitamin D Assay Testing. Therefore, an evidence review was not performed.

CLINICAL PRACTICE GUIDELINES

NOTE: The following major U.S. medical associations provided feedback during the response period for the LCD:

- American Clinical Laboratory Association (ACLA)
- College of American Pathology (CAP)
- Endocrine Society

Noridian responded by publishing a related Local Coverage Article (LCA) A55373: Response to Comments: Vitamin D Assay Testing^2, and adjusted the LCD language where appropriate.

Below are current clinical practice guidelines on Vitamin D testing that are not cited in the LCD, but support the criteria above.

U.S. Preventive Services Task Force (USPSTF)

In 2014, the USPSTF published evidence-based clinical practice guidelines regarding the efficacy of vitamin D screening in adults, which recommended the following:^3

“The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for vitamin D deficiency in asymptomatic adults.”

American Society of Clinical Pathology (ASCP)

In 2013, the ASCP contributed the following recommendation to Choosing Wisely®:^4

“Don’t perform population based screening for 25-OH-Vitamin D deficiency.”
Vitamin D deficiency is common in many populations, particularly in patients at higher latitudes, during winter months and in those with limited sun exposure. Over the counter Vitamin D supplements and increased summer sun exposure are sufficient for most otherwise healthy patients. Laboratory testing is appropriate in higher risk patients when results will be used to institute more aggressive therapy (e.g., osteoporosis, chronic kidney disease, malabsorption, some infections, obese individuals).”

Endocrine Society

In 2013, the Endocrine Society contributed the following recommendation to Choosing Wisely®:5

“Don’t routinely measure 1,25-dihydroxyvitamin D unless the patient has hypercalcemia or decreased kidney function.

Because 1,25-dihydroxyvitamin D is the active form of vitamin D, many practitioners think that measuring 1,25-dihydroxyvitamin D is an accurate means to estimate vitamin D stores and test for vitamin D deficiency, which is incorrect... Serum 25-hydroxyvitamin D levels may be overused, but when trying to assess vitamin D stores or diagnose vitamin D deficiency (or toxicity), 25-hydroxyvitamin D is the correct test.”

The 2011 Endocrine Society evidence-based clinical practice guideline on the evaluation, treatment, and prevention of vitamin D deficiency recommended the following regarding vitamin D testing:6

• “We recommend screening for vitamin D deficiency in individuals at risk for deficiency. We do not recommend population screening for vitamin D deficiency in individuals who are not at risk.”

The taskforce stated that individuals at risk of “currently, 25(OH)D measurement is reasonable in groups of people at high risk for vitamin D deficiency and in whom a prompt response to optimization of vitamin D status could be expected”. The guidelines list several indications in which screening would be reasonable.

• “We recommend using the serum circulating 25-hydroxyvitamin D [25(OH)D] level, measured by a reliable assay, to evaluate vitamin D status in patients who are at risk for vitamin D deficiency. Vitamin D deficiency is defined as a 25(OH)D below 20 ng/ml (50 nmol/liter)... We recommend against using the serum 1,25-dihydroxyvitamin D [1,25(OH)2D] assay for this purpose and are in favor of using it only in monitoring certain conditions, such as acquired and inherited disorders of vitamin D and phosphate metabolism.”

Both of these strong recommendations were based on high-quality evidence, consisting of “well-performed RCTs or exceptionally strong evidence from unbiased observational studies.”

POLICY SUMMARY

There is insufficient evidence that Vitamin D testing in healthy, asymptomatic individuals or for conditions not specifically associated with vitamin D deficiency improves health outcomes. There are no evidence-based clinical practice guidelines that recommend routine vitamin D testing for screening of
asymptomatic individuals. Furthermore, the United States Preventive Services Task Force (USPFTF) guidelines, do not recommend routine screening for vitamin D deficiency due to insufficient evidence of clinical utility.

INSTRUCTIONS FOR USE

Company Medical Policies serve as guidance for the administration of plan benefits. Medical policies do not constitute medical advice nor a guarantee of coverage. Company Medical Policies are reviewed annually and are based upon published, peer-reviewed scientific evidence and evidence-based clinical practice guidelines that are available as of the last policy update. The Companies reserve the right to determine the application of Medical Policies and make revisions to Medical Policies at any time. Providers will be given at least 60-days’ notice of policy changes that are restrictive in nature.

The scope and availability of all plan benefits are determined in accordance with the applicable coverage agreement. Any conflict or variance between the terms of the coverage agreement and Company Medical Policy will be resolved in favor of the coverage agreement.

REGULATORY STATUS

Mental Health Parity Statement

Coverage decisions are made on the basis of individualized determinations of medical necessity and the experimental or investigational character of the treatment in the individual case.

REFERENCES